Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 8(11): 6860-6884, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-27873904

ABSTRACT

Several immobilized enzyme-based electrochemical biosensors for glutamate detection have been developed over the last decade. In this review, we compare first and second generation sensors. Structures, working mechanisms, interference prevention, in vitro detection characteristics and in vivo performance are summarized here for those sensors that have successfully detected brain glutamate in vivo. In brief, first generation sensors have a simpler structure and are faster in glutamate detection. They also show a better sensitivity to glutamate during calibration in vitro. For second generation sensors, besides their less precise detection, their fabrication is difficult to reproduce, even with a semi-automatic dip-coater. Both generations of sensors can detect glutamate levels in vivo, but the reported basal levels are different. In general, second generation sensors detect higher basal levels of glutamate compared with the results obtained from first generation sensors. However, whether the detected glutamate is indeed from synaptic sources is an issue that needs further attention.

2.
Pharmacol Biochem Behav ; 90(2): 135-47, 2008 Aug.
Article in English | MEDLINE | ID: mdl-17939932

ABSTRACT

GABA and glutamate sampled from the brain by microdialysis do not always fulfill the classic criteria for exocytotic release. In this regard the origin (neuronal vs. astroglial, synaptic vs. extrasynaptic) of glutamate and GABA collected by microdialysis as well as in the ECF itself, is still a matter of debate. In this overview microdialysis of GABA and glutamate and the use of microsensors to detect extracellular glutamate are compared and discussed. During basal conditions glutamate in microdialysates is mainly derived from non-synaptic sources. Indeed recently several sources of astrocytic glutamate release have been described, including glutamate derived from gliotransmission. However during conditions of (chemical, electrical or behavioral) stimulation a significant part of glutamate might be derived from neurotransmission. Interestingly accumulating evidence suggests that glutamate determined by microsensors is more likely to reflect basal synaptic events. This would mean that microdialysis and microsensors are complementary methods to study extracellular glutamate. Regarding GABA we concluded that the chromatographic conditions for the separation of this transmitter from other amino acid-derivatives are extremely critical. Optimal conditions to detect GABA in microdialysis samples--at least in our laboratory--include a retention time of approximately 60 min and a careful control of the pH of the mobile phase. Under these conditions it appears that 50-70% of GABA in dialysates is derived from neurotransmission.


Subject(s)
Biosensing Techniques/methods , Glutamic Acid/metabolism , Microdialysis/methods , gamma-Aminobutyric Acid/metabolism , Astrocytes/metabolism , Chromatography, High Pressure Liquid , Extracellular Fluid/chemistry , Glutamic Acid/analysis , Hydrogen-Ion Concentration , Synaptic Vesicles/metabolism , gamma-Aminobutyric Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...