Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell ; 177(4): 852-864.e14, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982597

ABSTRACT

It is largely unclear whether genes that are naturally embedded in lamina-associated domains (LADs) are inactive due to their chromatin environment or whether LADs are merely secondary to the lack of transcription. We show that hundreds of human promoters become active when moved from their native LAD position to a neutral context in the same cells, indicating that LADs form a repressive environment. Another set of promoters inside LADs is able to "escape" repression, although their transcription elongation is attenuated. By inserting reporters into thousands of genomic locations, we demonstrate that escaper promoters are intrinsically less sensitive to LAD repression. This is not simply explained by promoter strength but by the interplay between promoter sequence and local chromatin features that vary strongly across LADs. Enhancers also differ in their sensitivity to LAD chromatin. This work provides a general framework for the systematic understanding of gene regulation by repressive chromatin.


Subject(s)
Gene Expression Regulation/genetics , Nuclear Lamina/genetics , Promoter Regions, Genetic/genetics , Chromatin/genetics , Chromatin/metabolism , Gene Expression/genetics , Genome, Human/genetics , Genomics , Humans , K562 Cells
2.
Forensic Sci Int Genet ; 31: 19-28, 2017 11.
Article in English | MEDLINE | ID: mdl-28841467

ABSTRACT

The use of DNA methylation (DNAm) to obtain additional information in forensic investigations showed to be a promising and increasing field of interest. Prediction of the chronological age based on age-dependent changes in the DNAm of specific CpG sites within the genome is one such potential application. Here we present an age-prediction tool for whole blood based on massive parallel sequencing (MPS) and a random forest machine learning algorithm. MPS allows accurate DNAm determination of pre-selected markers and neighboring CpG-sites to identify the best age-predictive markers for the age-prediction tool. 15 age-dependent markers of different loci were initially chosen based on publicly available 450K microarray data, and 13 finally selected for the age tool based on MPS (DDO, ELOVL2, F5, GRM2, HOXC4, KLF14, LDB2, MEIS1-AS3, NKIRAS2, RPA2, SAMD10, TRIM59, ZYG11A). Whole blood samples of 208 individuals were used for training of the algorithm and a further 104 individuals were used for model evaluation (age 18-69). In the case of KLF14, LDB2, SAMD10, and GRM2, neighboring CpG sites and not the initial 450K sites were chosen for the final model. Cross-validation of the training set leads to a mean absolute deviation (MAD) of 3.21 years and a root-mean square error (RMSE) of 3.97 years. Evaluation of model performance using the test set showed a comparable result (MAD 3.16 years, RMSE 3.93 years). A reduced model based on only the top 4 markers (ELOVL2, F5, KLF14, and TRIM59) resulted in a RMSE of 4.19 years and MAD of 3.24 years for the test set (cross validation training set: RMSE 4.63 years, MAD 3.64 years). The amplified region was additionally investigated for occurrence of SNPs in case of an aberrant DNAm result, which in some cases can be an indication for a deviation in DNAm. Our approach uncovered well-known DNAm age-dependent markers, as well as additional new age-dependent sites for improvement of the model, and allowed the creation of a reliable and accurate epigenetic tool for age-prediction without restriction to a linear change in DNAm with age.


Subject(s)
Aging/genetics , Algorithms , CpG Islands/genetics , DNA Methylation , High-Throughput Nucleotide Sequencing , Adolescent , Adult , Aged , Genetic Markers , Humans , Machine Learning , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL