Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37371974

ABSTRACT

The maintenance of Thioredoxin-1 (Trx-1) levels, and thus of cellular redox homeostasis, is vital for endothelial cells (ECs) to prevent senescence induction. One hallmark of EC functionality, their migratory capacity, which depends on intact mitochondria, is reduced in senescence. Caffeine improves the migratory capacity and mitochondrial functionality of ECs. However, the impact of caffeine on EC senescence has never been investigated. Moreover, a high-fat diet, which can induce EC senescence, results in approximately 1 ng/mL lipopolysaccharide (LPS) in the blood. Therefore, we investigated if low dose endotoxemia induces EC senescence and concomitantly reduces Trx-1 levels, and if caffeine prevents or even reverses senescence. We show that caffeine precludes H2O2-triggered senescence induction by maintaining endothelial NO synthase (eNOS) levels and preventing the elevation of p21. Notably, 1 ng/mL LPS also increases p21 levels and reduces eNOS and Trx-1 amounts. These effects are completely blocked by co-treatment with caffeine. This prevention of senescence induction is similarly accomplished by the permanent expression of mitochondrial p27, a downstream effector of caffeine. Most importantly, after senescence induction by LPS, a single bolus of caffeine inhibits the increase in p21. This treatment also blocks Trx-1 degradation, suggesting that the reversion of senescence is intimately associated with a normalized redox balance.

2.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34672678

ABSTRACT

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Subject(s)
Electron Transport Complex I/metabolism , Mitochondria, Heart/enzymology , Mitochondrial Proteins/metabolism , Myocardial Reperfusion Injury/enzymology , Telomerase/metabolism , Animals , Electron Transport Complex I/genetics , Female , Humans , Male , Mice , Mice, Transgenic , Mitochondria, Heart/genetics , Mitochondrial Proteins/genetics , Myocardial Reperfusion Injury/genetics , Telomerase/genetics
3.
Antioxidants (Basel) ; 10(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34573059

ABSTRACT

Sepsis is an exaggerated immune response upon infection with lipopolysaccharide (LPS) as the main causative agent. LPS-induced activation and apoptosis of endothelial cells (EC) can lead to organ dysfunction and finally organ failure. We previously demonstrated that the first twenty amino acids of the Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) are sufficient to inhibit EC apoptosis. To identify genes whose regulation by LPS is affected by this N-terminal APEX1 peptide, EC were transduced with an expression vector for the APEX1 peptide or an empty control vector and treated with LPS. Following RNA deep sequencing, genes upregulated in LPS-treated EC expressing the APEX1 peptide were identified bioinformatically. Selected candidates were validated by semi-quantitative real time PCR, a promising one was Selenoprotein T (SELENOT). For functional analyses, an expression vector for SELENOT was generated. To study the effect of SELENOT expression on LPS-induced EC activation and apoptosis, the SELENOT vector was transfected in EC. Immunostaining showed that SELENOT was expressed and localized in the ER. EC transfected with the SELENOT plasmid showed no activation and reduced apoptosis induced by LPS. SELENOT as well as APEX1(1-20) can protect EC against activation and apoptosis and could provide new therapeutic approaches in the treatment of sepsis.

4.
Matrix Biol ; 102: 20-36, 2021 08.
Article in English | MEDLINE | ID: mdl-34464693

ABSTRACT

The association between hyaluronan (HA) accumulation and increased inflammation in the colon suggests that HA is a potential therapeutic target in inflammatory bowel disease (IBD). However, whether patients with IBD would benefit from interference with HA synthesis is unknown. Here, we used pharmacological and genetic approaches to investigate the impact of systemic and partial blockade of HA synthesis in the Dextran Sodium Sulfate (DSS)-induced colitis model. To systemically inhibit HA production, we used 4-Methylumbelliferone (4-MU), whereas genetic approaches included the generation of mice with global or inducible cell-type specific deficiency in the Hyaluronan synthase 3 (Has3). We found that 4-MU treatment did not ameliorate but exacerbated disease severity characterized by increased body weight loss and enhanced colon tissue destruction compared to control mice without colitis. In contrast, global Has3 deficiency had a profound protective effect as reflected by a low colitis score and reduced infiltration of immune cells into the colon. To get further mechanistic insight into the proinflammatory role of HAS3, we deleted Has3 in a cell-type specific manner. Interestingly, while lack of Has3 expression in intestinal epithelial and smooth muscle cells had no effect or was rather proinflammatory, mice with Has3 deficiency in the endothelium were strongly protected against acute colitis. We conclude that endothelium-derived HAS3 plays a critical role in driving experimental colitis, warranting future studies on cell type-specific therapeutic interference with HA production in human IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Colitis/chemically induced , Colitis/genetics , Disease Models, Animal , Endothelium , Humans , Hyaluronan Synthases/genetics , Inflammatory Bowel Diseases/genetics , Mice , Mice, Inbred C57BL , Models, Theoretical
5.
Front Cell Dev Biol ; 9: 698658, 2021.
Article in English | MEDLINE | ID: mdl-34307376

ABSTRACT

Mitochondrial protein biogenesis relies almost exclusively on the expression of nuclear-encoded polypeptides. The current model postulates that most of these proteins have to be delivered to their final mitochondrial destination after their synthesis in the cytoplasm. However, the knowledge of this process remains limited due to the absence of proper experimental real-time approaches to study mitochondria in their native cellular environment. We developed a gentle microinjection procedure for fluorescent reporter proteins allowing a direct non-invasive study of protein transport in living cells. As a proof of principle, we visualized potential-dependent protein import into mitochondria inside intact cells in real-time. We validated that our approach does not distort mitochondrial morphology and preserves the endogenous expression system as well as mitochondrial protein translocation machinery. We observed that a release of nascent polypeptides chains from actively translating cellular ribosomes by puromycin strongly increased the import rate of the microinjected pre-protein. This suggests that a substantial amount of mitochondrial translocase complexes was involved in co-translational protein import of endogenously expressed pre-proteins. Our protein microinjection method opens new possibilities to study the role of mitochondrial protein import in cell models of various pathological conditions as well as aging processes.

6.
Oxid Med Cell Longev ; 2019: 7976382, 2019.
Article in English | MEDLINE | ID: mdl-31281593

ABSTRACT

Concentrations of low-density lipoprotein (LDL) above 0.8 mg/ml have been associated with increased risk for cardiovascular diseases and impaired endothelial functionality. Here, we demonstrate that high concentrations of LDL (1 mg/ml) decreased NOS3 protein and RNA levels in primary human endothelial cells. In addition, RNA sequencing data, in particular splice site usage analysis, showed a shift in NOS3 exon-exon junction reads towards those specifically assigned to nonfunctional transcript isoforms further diminishing the functional NOS3 levels. The reduction in NOS3 was accompanied by decreased migratory capacity, which depends on intact mitochondria and ATP formation. In line with these findings, we also observed a reduced ATP content. While mitochondrial mass was unaffected by high LDL, we found an increase in mitochondrial DNA copy number and mitochondrial RNA transcripts but decreased expression of nuclear genes coding for respiratory chain proteins. Therefore, high LDL treatment most likely results in an imbalance between respiratory chain complex proteins encoded in the mitochondria and in the nucleus resulting in impaired respiratory chain function explaining the reduction in ATP content. In conclusion, high LDL treatment leads to a decrease in active NOS3 and dysregulation of mitochondrial transcription, which is entailed by reduced ATP content and migratory capacity and thus, impairment of endothelial cell functionality.


Subject(s)
Endothelial Cells/metabolism , Lipoproteins, LDL/metabolism , Mitochondria/metabolism , Humans , Transcription, Genetic
7.
PLoS Biol ; 16(6): e2004408, 2018 06.
Article in English | MEDLINE | ID: mdl-29927970

ABSTRACT

We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.


Subject(s)
Caffeine/pharmacology , Cardiotonic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Mitochondria/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/physiology , Adenosine Triphosphate/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Line , Cell Movement/physiology , Cyclin-Dependent Kinase Inhibitor p27/genetics , Endothelial Cells/physiology , HEK293 Cells , Humans , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/cytology , Protein Transport/physiology
8.
Antioxid Redox Signal ; 26(12): 616-629, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27835927

ABSTRACT

The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. AIMS: As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. RESULTS: APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. INNOVATION: APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. CONCLUSION: As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.


Subject(s)
Apoptosis/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Graft Occlusion, Vascular/genetics , Thioredoxins/biosynthesis , Amino Acids/genetics , Amino Acids/metabolism , Blood Vessels/metabolism , Blood Vessels/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Caspase 3/genetics , Caspase 3/metabolism , Cathepsin D/genetics , Cell Proliferation/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/biosynthesis , Endothelial Cells/metabolism , Gene Expression Regulation , Graft Occlusion, Vascular/pathology , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Oxidative Stress/genetics , Thioredoxins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...