Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
PLoS Comput Biol ; 19(12): e1010355, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127856

ABSTRACT

The mechanisms triggering the human immunodeficiency virus type I (HIV-1) to switch the coreceptor usage from CCR5 to CXCR4 during the course of infection are not entirely understood. While low CD4+ T cell counts are associated with CXCR4 usage, a predominance of CXCR4 usage with still high CD4+ T cell counts remains puzzling. Here, we explore the hypothesis that viral adaptation to the human leukocyte antigen (HLA) complex, especially to the HLA class II alleles, contributes to the coreceptor switch. To this end, we sequence the viral gag and env protein with corresponding HLA class I and II alleles of a new cohort of 312 treatment-naive, subtype C, chronically-infected HIV-1 patients from South Africa. To estimate HLA adaptation, we develop a novel computational approach using Bayesian generalized linear mixed models (GLMMs). Our model allows to consider the entire HLA repertoire without restricting the model to pre-learned HLA-polymorphisms. In addition, we correct for phylogenetic relatedness of the viruses within the model itself to account for founder effects. Using our model, we observe that CXCR4-using variants are more adapted than CCR5-using variants (p-value = 1.34e-2). Additionally, adapted CCR5-using variants have a significantly lower predicted false positive rate (FPR) by the geno2pheno[coreceptor] tool compared to the non-adapted CCR5-using variants (p-value = 2.21e-2), where a low FPR is associated with CXCR4 usage. Consequently, estimating HLA adaptation can be an asset in predicting not only coreceptor usage, but also an approaching coreceptor switch in CCR5-using variants. We propose the usage of Bayesian GLMMs for modeling virus-host adaptation in general.


Subject(s)
HIV Infections , HIV-1 , Humans , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Phylogeny , Bayes Theorem , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Histocompatibility Antigens
2.
Graefes Arch Clin Exp Ophthalmol ; 261(8): 2265-2280, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36976356

ABSTRACT

PURPOSE: We aimed to establish a rabbit model with retinal atrophy induced by an iatrogenic retinal pigment epithelium (RPE) removal, for future testing of the efficacy and safety of cell therapy strategies. METHODS: A localized detachment of the retina from the RPE/choroid layer was created in 18 pigmented rabbits. The RPE was removed by scraping with a custom-made extendable loop instrument. The resulting RPE wound was observed over a time course of 12 weeks with optical coherence tomography and angiography. After 4 days (group 1) and 12 weeks (group 2), histology was done and staining with hematoxylin and eosin, as well as immunofluorescence performed to further investigate the effects of debridement on the RPE and the overlying retina. RESULTS: Already after 4 days, we observed a closure of the RPE wound by proliferating RPE and microglia/macrophage cells forming a multilayered clump. This pattern continued over the observation time course of 12 weeks, whereby the inner and outer nuclear layer of the retina became atrophic. No neovascularization was observed in the angiograms or histology. The observed changes were limited to the site of the former RPE wound. CONCLUSIONS: Localized surgical RPE removal induced an adjacent progressive retinal atrophy. Altering the natural course of this model may serve as a basis to test RPE cell therapeutics.


Subject(s)
Retinal Degeneration , Retinal Pigment Epithelium , Animals , Rabbits , Retinal Pigment Epithelium/pathology , Retina/pathology , Choroid/pathology , Tomography, Optical Coherence/methods , Atrophy , Fluorescein Angiography/methods
3.
Pharmaceutics ; 14(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35456571

ABSTRACT

In vitro model systems of the blood-brain barrier (BBB) play an essential role in pharmacological research, specifically during the development and preclinical evaluation of new drug candidates. Within the past decade, the trend in research and further development has moved away from models based on primary cells of animal origin towards differentiated models derived from human induced pluripotent stem cells (hiPSs). However, this logical progression towards human model systems from renewable cell sources opens up questions about the transferability of results generated in the primary cell models. In this study, we have evaluated both models with identical experimental parameters and achieved a directly comparable characterisation showing no significant differences in protein expression or permeability even though the achieved transendothelial electrical resistance (TEER) values showed significant differences. In the course of this investigation, we also determined a significant deviation of both model systems from the in vivo BBB circumstances, specifically concerning the presence or absence of serum proteins in the culture media. Thus, we have further evaluated both systems when confronted with an in vivo-like distribution of serum and found a notable improvement in the differential permeability of hydrophilic and lipophilic compounds in the hiPS-derived BBB model. We then transferred this model into a microfluidic setup while maintaining the differential serum distribution and evaluated the permeability coefficients, which showed good comparability with values in the literature. Therefore, we have developed a microfluidic hiPS-based BBB model with characteristics comparable to the established primary cell-based model.

4.
Environ Res ; 207: 112592, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34973943

ABSTRACT

As highlighted in the Minamata Convention, Mercury (Hg) in its various forms poses a substantial risk to human health and the environment. The health relevance of Hg is also recognized by the European Human Biomonitoring Initiative (HBM4EU), which classifies Hg as a priority substance, since considerable knowledge and data gaps on Hg exposure levels and their changes over time still exist in Europe. The German Environmental Specimen Bank (German ESB) provides valuable policy relevant data and long-term trends of substance exposure on a national level for international comparison and evaluation. In this study we analysed data of the German ESB on Hg exposure of young adults aged 20 to 29 including data on urinary Hg levels from 1995 to 2018 and whole blood Hg levels from 2001 to 2010. Results show a clear decrease in both, about 86% in urine total daily Hg excretion from 1995 (0.76 µg/L) to 2018 (0.11 µg/L) (n = 10,069) and about 57% in blood concentrations of Hg from 2001 (1.76 µg/L) to 2010 (0.77 µg/L) (n = 4085). Over the investigated timeframe only a few values exceeded the toxicologically derived health based guidance value HBM I for blood and urine, with these exceedances decreasing over time in line with the general trend. The factors mostly influencing Hg excretion identified in this study are dental amalgam as well as fish and seafood consumption. Besides other factors (e.g. age and sex), also airborne Hg exposure appears to be a low but evident influencing factor in Germany. Although a considerable decrease in internal Hg exposure is recognized in the last decades, the current low-level exposure may cause adverse health effects especially to vulnerable groups such as pregnant women and children. To further elucidate and evaluate current exposure sources and to reduce human exposure to Hg, continuous environmental and human biomonitoring is needed.


Subject(s)
Environmental Pollutants , Mercury , Animals , Biological Monitoring , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Female , Germany , Humans , Mercury/analysis , Pregnancy
5.
Eur J Pharm Sci ; 168: 106046, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34670122

ABSTRACT

The development of new tumor models for anticancer drug screening is a challenge for preclinical research. Conventional cell-based in vitro models such as 2D monolayer cell cultures or 3D spheroids allow an initial assessment of the efficacy of drugs but they have a limited prediction to the in vivo effectiveness. In contrast, in vivo animal models capture the complexity of systemic distribution, accumulation, and degradation of drugs, but visualization of the individual steps is challenging and extracting quantitative data is usually very difficult. Furthermore, there are a variety of ethical concerns related to animal tests. In accordance with the 3Rs principles of Replacement, Reduction and Refinement, alternative test systems should therefore be developed and applied in preclinical research. The Hen's egg test on chorioallantoic membrane (HET-CAM) model provides the generation of vascularized tumor spheroids and therefore, is an ideal test platform which can be used as an intermediate step between in vitro analysis and preclinical evaluation in vivo. We developed a HET-CAM based intestine tumor model to investigate the accumulation and efficacy of nano-formulated photosensitizers. Irradiation is necessary to activate the phototoxic effect. Due to the good accessibility of the vascularized tumor on the CAM, we have developed a laser irradiation setup to simulate an in vivo endoscopic irradiation. The study presents quantitative as well as qualitative data on the accumulation and efficacy of the nano-formulated photosensitizers in a vascularized intestine tumor model.


Subject(s)
Chorioallantoic Membrane , Photosensitizing Agents , Animals , Chickens , Drug Evaluation, Preclinical , Female , Intestines
6.
Front Bioeng Biotechnol ; 9: 718889, 2021.
Article in English | MEDLINE | ID: mdl-34381768

ABSTRACT

Biosensors become increasingly relevant for medical diagnostics, pharmaceutical industry, and environmental technology, for example, to test new drugs easily and reliably or to detect cell growth in changing environmental conditions. Novel materials like graphene are promising candidates to produce biosensors on an industrial scale by means of printing processes. To reach this aim, methods for the reliable and automated production of electrode structures and their coating are required. We present an impedance biosensor in the format of a microtiter plate, fabricated by highly efficient roll-to-roll printing of graphene-based microstructures on large-area polymer foils. Proof-of-principle experiments show the evidence of the suitability of the printed graphene biosensors for impedance-based monitoring of viral cytopathogenicity and its inhibition in the presence of antiviral drugs. The developed system is a promising approach toward cost-efficient impedimetric biosensors for high-throughput screening in vaccine research and antiviral drug development.

7.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063963

ABSTRACT

A better understanding of their interaction with cell-based tissue is a fundamental prerequisite towards the safe production and application of engineered nanomaterials. Quantitative experimental data on the correlation between physicochemical characteristics and the interaction and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus hampering the development of effective predictive non-testing strategies. Against this background, the presented study investigated the translocation of gold and silver nanoparticles across the gastrointestinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model. Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influence of the applied nanoparticles on both cell viability and generation of reactive oxygen species. Transmission electron microscopy indicated an intact cell barrier during the translocation study. Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent of their size, shape, surface charge, and stability in cell culture medium. This quantitative data provided the experimental basis for the successful mathematical description of the nanoparticle transport kinetics using a non-linear mixed effects modeling approach. The results of this study may serve as a basis for the development of predictive tools for improved risk assessment of engineered nanomaterials in the future.

8.
Small ; 17(15): e2006012, 2021 04.
Article in English | MEDLINE | ID: mdl-33458959

ABSTRACT

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.


Subject(s)
Microfluidic Analytical Techniques , Pharmaceutical Preparations , Animals , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Lab-On-A-Chip Devices , Microfluidics
9.
Acta Ophthalmol ; 99(7): e1070-e1076, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33381918

ABSTRACT

PURPOSE: To analyse the cytotoxic and antiproliferative effect of methotrexate (MTX) and fluorouracil (5-FU) in vitro on fibroblasts, retinal pigment epithelial (RPE) and photoreceptor cells as an adjunct for reducing the incidence of proliferative vitreoretinopathy (PVR) after rhegmatogenous retinal detachment surgery. METHODS: Methotrexate and 5-FU were dissolved separately in balanced salt solution (BSS) with concentrations ranging from 0-8000 µg/ml and 0-4000 µg/ml, respectively. All solutions were analysed in terms of pH and osmolarity and applied for 1 h to fibroblasts (BJ), RPE (ARPE-19) and photoreceptor (661W) cell lines adherently cultivated in 96-well cell culture plates (10 000 cells/well). 24 h after incubation, the proliferative (BrdU), metabolic (CellTiter-Glo) and apoptotic (Caspase 3/7) activity of the cells were examined in vitro. RESULTS: 5-FU had an antiproliferative effect on BJ and ARPE-19 cells starting from low concentrations (2 µg/ml). However, the viability of 661W cells decreased and apoptosis was induced with increasing 5-FU concentration. In contrast, MTX up to a concentration of 266 µg/ml did neither result in a significant loss of viability nor in increased caspase 3/7 activity of BJ, ARPE-19 and 661W cells and inhibited the proliferation of ARPE-19 already at low concentrations starting from 8 µg/ml. CONCLUSIONS: Methotrexate dissolved in BSS is biocompatible up to a concentration of 266 µg/ml and may act as an intraoperative rinse solution to inhibit RPE proliferation in PVR-diseased eyes. Contrary, the use of 5-FU within the posterior segment of the eye is limited by its cell-damaging effect on photoreceptor cells.


Subject(s)
Fluorouracil/adverse effects , Methotrexate/adverse effects , Retinal Pigment Epithelium/pathology , Vitreoretinopathy, Proliferative/drug therapy , Apoptosis , Cells, Cultured , Fluorouracil/therapeutic use , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Methotrexate/therapeutic use , Retinal Pigment Epithelium/drug effects , Vitreoretinopathy, Proliferative/pathology
10.
Nucleic Acids Res ; 49(1): 127-144, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33305319

ABSTRACT

MicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways. First, targets and target pathways are predicted and prioritized by computational means to increase the specificity and positive predictive value. Second, the novel webtool miRTaH facilitates guided designs of reporter assay constructs at scale. Third, automated and standardized reporter assays are performed. We evaluated HiTmIR using miR-34a-5p, for which TNF- and TGFB-signaling, and Parkinson's Disease (PD)-related categories were identified and repeated the pipeline for miR-7-5p. HiTmIR validated 58.9% of the target genes for miR-34a-5p and 46.7% for miR-7-5p. We confirmed the targeting by measuring the endogenous protein levels of targets in a neuronal cell model. The standardized positive and negative targets are collected in the new miRATBase database, representing a resource for training, or benchmarking new target predictors. Applied to 88 target predictors with different confidence scores, TargetScan 7.2 and miRanda outperformed other tools. Our experiments demonstrate the efficiency of HiTmIR and provide evidence for an orchestrated miRNA-gene targeting.


Subject(s)
Gene Expression Regulation/genetics , High-Throughput Screening Assays , MicroRNAs/genetics , 1-Methyl-4-phenylpyridinium , 3' Untranslated Regions , Cell Line , Cell Line, Tumor , Genes, Reporter , Humans , Mesencephalon/cytology , Neuroblastoma/pathology , Neurons/metabolism , Parkinson Disease/genetics , Predictive Value of Tests , Sensitivity and Specificity , Signal Transduction , Transcriptome , Transforming Growth Factor beta/physiology , Tumor Necrosis Factor-alpha/physiology
11.
Int J Hyg Environ Health ; 231: 113665, 2021 01.
Article in English | MEDLINE | ID: mdl-33221633

ABSTRACT

Lead is a ubiquitous pollutant with well-known effects on human health. As there is no lower toxicological threshold for lead in blood and since data gaps on lead exposure still exist in many European countries, HBM data on lead is of high importance. To address this, the European Human Biomonitoring Initiative HBM4EU classified lead as a priority substance. The German Environmental Specimen Bank (German ESB) has monitored lead exposure since more than 35 years. Using data from the early 1980s to 2019 we reveal and discuss long-term trends in blood lead levels (BLLs) and current internal exposure of young adults in Germany. BLLs in young adults decreased substantially in the investigated period. As results from the ESB sampling site Muenster demonstrate, the geometric mean of BLLs of young adults decreased from 1981 (78,7 µg/L) to 2019 (10.4 µg/L) by about 87%. Trends in human exposure closely correlate with air lead levels (ALLs) provided by the European Monitoring and Evaluation Programme (EMEP). Hence, the decrease of BLLs largely reflects the drop in air lead pollution. Known associations of sex, smoking, alcohol consumption, and housing situation with BLLs are confirmed with data of the German ESB. Although internal lead exposure in Germany decreased substantially, the situation might be different in other European countries. Since 2010, BLLs of young adults in Germany levelled out at approximately 10 µg/L. The toxicity of lead even at low levels is known to cause adverse health effects especially in children following exposure of the child or the mother during pregnancy. To identify current exposure sources and to minimize future lead exposure, continuous monitoring of lead intake and exposure levels is needed.


Subject(s)
Environmental Pollutants , Lead , Biological Monitoring , Biological Specimen Banks , Child , Environmental Exposure/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Germany , Humans , Young Adult
12.
Biopreserv Biobank ; 18(2): 122-135, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32281895

ABSTRACT

Human biomonitoring (HBM) depends on high-quality human samples to identify status and trends in exposure and ensure comparability of results. In this context, much effort has been put into the development of standardized processes and quality assurance for sampling and chemical analysis, while effects of sample storage and shipment on sample quality have been less thoroughly addressed. To characterize the currently applied storage and shipment procedures within the consortium of the European Human Biomonitoring Initiative (HBM4EU), which aims at harmonization of HBM in Europe, a requirement analysis based on data from an online survey was conducted. In addition, the online survey was addressed to professionals in clinical biobanking represented by members of the European, Middle Eastern and African Society for Biopreservation and Biobanking (ESBB) to identify the current state-of-the-art in terms of sample storage and shipment. Results of this survey conducted in these two networks were compared to detect processes with potential for optimization and harmonization. In general, many similarities exist in sample storage and shipment procedures applied by ESBB members and HBM4EU partners and many requirements for ensuring sample quality are already met also by HBM4EU partners. Nevertheless, a need for improvement was identified for individual steps in sample storage, shipment, and related data management with potential impact on sample and data quality for HBM purposes. Based on these findings, recommendations for crucial first steps to further strengthen sample quality, and thus foster advancement in HBM on a pan-European level are given.


Subject(s)
Biological Specimen Banks/standards , Specimen Handling/standards , Africa , Environmental Exposure , Europe , Humans , Middle East , Surveys and Questionnaires
13.
Eur J Pharm Sci ; 143: 105181, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31852628

ABSTRACT

Steroid hormones became increasingly interesting as active pharmaceutical ingredients for the treatment of endocrine disorders. However, medical applications of many steroidal drugs are inhibited by their very low aqueous solubilities giving rise to low bioavailabilities. Therefore, the prioritized oral administration of steroidal drugs remains problematic. Cyclodextrins are promising candidates for the development of drug delivery systems for oral route applications, since they solubilize hydrophobic steroids and increase their rate of transport in aqueous environments. In this study, the synthesis and characterization of polymeric ß-cyclodextrin derivates is described, which result from the attachment of a hydrophilic ß-CD-thioether to hyaluronic acid. Host-guest complexes of the synthesized ß-cyclodextrin hyaluronic acid conjugates were formed with two poorly soluble model steroids (ß-estradiol, dexamethasone) and compared to monomeric ß-cyclodextrin derivates regarding solubilization and complexation efficiency. The ß-cyclodextrin-drug (host-guest) complexes were evaluated in vitro for their suitability (cytotoxicity and transport rate) as intestinal drug carriers for steroid hormones. In case of ß-estradiol, higher solubilities could be achieved by complexation with both synthesized ß-cyclodextrin derivates, leading to significantly higher intestinal transport rates in vitro. However, this success could not be shown for dexamethasone, which namely solubilized better, but could not enhance the transport rate significantly. Thus, this study demonstrates the biocompatibility of the synthesized and characterized ß-cyclodextrin derivates and shows their potential as new candidate for intestinal drug carrier for steroid hormones like ß-estradiol.


Subject(s)
Dexamethasone/administration & dosage , Drug Carriers/administration & dosage , Estradiol/administration & dosage , Hyaluronic Acid/administration & dosage , Sulfides/administration & dosage , beta-Cyclodextrins/administration & dosage , Caco-2 Cells , Dexamethasone/chemistry , Drug Carriers/chemistry , Estradiol/chemistry , HT29 Cells , Humans , Hyaluronic Acid/chemistry , Intestinal Absorption , Solubility , Sulfides/chemistry , beta-Cyclodextrins/chemistry
14.
Altern Lab Anim ; 47(3-4): 116-127, 2019.
Article in English | MEDLINE | ID: mdl-31698922

ABSTRACT

Serum supplementation is crucial in in vitro cell culture to provide all the essential nutrients needed for cellular processes. Fetal bovine serum (FBS) is considered the 'gold standard', but its production raises serious ethical concerns. Human-derived alternatives to FBS exist in the form of human platelet lysates (hPLs) or human AB serum (ABS). However, these serum products are usually pooled from several donors, in order to have a standardised product without patient-specific deviations. Nevertheless, the use of patient-specific serum in cell culture might be the key to successful transplantation of the cultured cells in medical applications, particularly as it avoids the transmission of infectious components or xenogenic proteins. In addition, the production of non-pooled hPL from single donors is likely to be a cost-effective and time-saving method. The current study used hPL units isolated from single donors and tested their performance as medium supplements for cell culture in comparison with FBS or ABS. This proof-of-concept study aimed to assess the potential of non-pooled hPL for personalised serum supplementation, and thus optimise in vitro models by making them more relevant to human physiology. We showed that A549, HepG2 and Caco-2 human cell lines were generally able to adapt to the new culture conditions and maintain viability, morphology and certain cell-specific characteristics. These results indicate that non-pooled, single patient-derived hPL could be a suitable alternative for in vitro serum supplementation.


Subject(s)
Cell Culture Techniques , Serum , A549 Cells , Caco-2 Cells , Cell Culture Techniques/methods , Cell Culture Techniques/standards , Cell Proliferation , Hep G2 Cells , Humans
15.
Transl Vis Sci Technol ; 8(3): 56, 2019 May.
Article in English | MEDLINE | ID: mdl-31293811

ABSTRACT

PURPOSE: To determine the viscoelasticity of human vitreous bodies and its changes with age in order to benefit the understanding and therapy of vitreoretinal diseases. METHODS: In a postmortem study, 190 human vitreous bodies were extracted from 33- to 92-year-old donors, analyzed with regard to their viscoelastic properties via dynamic mechanical analyses, and compared with bovine and porcine vitreous. Postmortem intervals and donor-related parameters were examined as potential parameters influencing vitreous viscoelasticity. Dynamic moduli of different hyaluronic acid (HA) solutions as well as human vitreous treated with HA injections were determined by frequency sweep tests. RESULTS: With age the viscoelasticity of human vitreous bodies decreased significantly and independently of postmortem intervals, diabetes, and the donor's sex. The storage modulus G' and loss modulus G″ correlated strongly with the donor's age with r = -0.789 and r = -0.764, respectively. Bovine and porcine vitreous bodies exhibited dynamic moduli comparable only to the viscoelastic properties of aged human vitreous and are thus limited models for the simulation of the human vitreous. The viscoelasticity of aged human vitreous bodies was found to be increased after intravitreal injections of highly concentrated HA. CONCLUSIONS: The present postmortem study is the first to show a significant age-related reduction in the viscoelasticity of entire human vitreous bodies. Highly concentrated HA injections may serve as a possible therapeutic approach for restoring the viscoelasticity of aged vitreous bodies. TRANSLATIONAL RELEVANCE: These findings improve the understanding and therapy of the vitreous liquefaction with age and the associated vitreoretinal diseases.

16.
Toxicol In Vitro ; 61: 104610, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31362040

ABSTRACT

Nanoplastics (NP) and microplastics (MP) accumulate in our environment as a consequence of the massive consumption of plastics. Huge knowledge-gaps exist regarding uptake and fate of plastic particles in micro- and nano-dimensions in humans as well as on their impact on human health. This study investigated the transport and effects of 50 nm and 0.5 µm COOH-modified polystyrene (PS) particles, as representatives for NP and MP, in different biological models in vitro. Acute toxicity and potential translocation of the particles were studied at the human intestinal and placental barrier using advanced in vitro co-culture models. Furthermore, embryotoxicity and genotoxicity were investigated as highly sensitive endpoints. Polystyrene was not acutely toxic in both sizes (nano- and microparticles). No transport across the intestinal and placental barrier but a cellular uptake and intracellular accumulation of PS nano- and microparticles were determined. The particles were identified as weak embryotoxic and non-genotoxic. In contrast to single-organ studies, this multi-endpoint study is providing a data-set with the exact same type of particles to compare organ-specific outcomes. Our study clearly shows the need to investigate other types of plastics as well as towards long-term or chronic effects of plastic particles in different biological models in vitro.


Subject(s)
Nanoparticles/toxicity , Polystyrenes/toxicity , Animals , Biological Transport , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Female , Humans , Intestinal Mucosa/metabolism , Mice , Micronucleus Tests , Models, Biological , Particle Size , Placenta/metabolism , Pregnancy
17.
Int J Hyg Environ Health ; 222(5): 831-839, 2019 06.
Article in English | MEDLINE | ID: mdl-31030889

ABSTRACT

To document trends in human exposure to environmental pollutants, the German Environmental Specimen Bank (ESB) has been routinely collecting and archiving 24-h urine samples from young adults at four sampling sites in Germany on an annual basis. For the purpose of normalizing measured analyte concentrations, urinary creatinine (UC), specific gravity (SG), conductivity (CON), and total urine volume (UVtot) of 24-h urine samples have also been recorded. These parameters are however susceptible to variation over time, as well as within/among participants and normalization against them can thus affect the interpretation of data regarding exposure to environmental pollutants. To evaluate the influence of normalization against these parameters, we first sought to determine variations of these parameters with regard to differences between sexes and trends over time. We analysed data from 8619 urine samples collected from 1997 to 2016. We observed an inverse relation between UVtot and UC, SG, and CON. We also found differences between sexes for UC, SG and CON, but not UVtot. UC, SG, and CON showed significant decreasing trends over time in both sexes. In contrast, a significant increase of over 30% in UVtot, independent of participant age and BMI, was revealed. This increase in UVtot and the concomitant sample dilution is likely to have an impact on measured analyte concentrations in 24-h urine samples. Hence, normalization of urinary concentrations is warranted when interpreting time trends of human exposure. Next, urinary calcium (Ca2+) concentrations of ESB participants were used to demonstrate the effects of normalization against each of the four urine parameters. From 1997 to 2016, measured Ca2+ concentrations showed a statistically significant but scientifically implausible decrease. Normalization of Ca2+ concentrations against UVtot (by calculating the total daily excretion), UC, or CON, but not SG, eliminated this decrease. Consistent with previous work, Ca2+ concentrations in urine and total daily Ca2+ excretion were higher for males than females. Normalization against UC, SG, or CON, however, attenuated this difference. Thus, to avoid misinterpretation in trend analysis and sex-specific excretion in 24-h urine samples, the calculation of the total daily excretion is recommended.


Subject(s)
Biological Monitoring/methods , Environmental Monitoring/methods , Biological Specimen Banks , Calcium/urine , Electric Conductivity , Environmental Exposure/analysis , Female , Germany , Humans , Male , Sex Factors , Specific Gravity
18.
Sci Rep ; 9(1): 3257, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824796

ABSTRACT

Novel strategies in the design of HIV-1 fusion/entry inhibitors are based on the construction of dual-targeting fusion proteins and peptides with synergistic antiviral effects. In this work we describe the design of dual-targeting peptides composed of peptide domains of E2 and E1 envelope proteins from Human Pegivirus with the aim of targeting both the loop region and the fusion peptide domains of HIV-1 gp41. In a previous work, we described the inhibitory role of a highly conserved fragment of the E1 protein (domain 139-156) which interacts with the HIV-1 fusion peptide at the membrane level. Here, two different dual-targeting peptides, where this E1 peptide is located on the N- or the C-terminus respectively, have been chemically synthesized and their antiviral activities have been evaluated with HIV pseudotyped viruses from different clades. The study of the functional behaviour of peptides in a membranous environment attending to the peptide recognition of the target sites on gp41, the peptide conformation as well as the peptide affinity to the membrane, demonstrate that antiviral activity of the dual-targeting peptides is directly related to the peptide affinity and its subsequent assembly into the model membrane. The overall results point out to the necessity that fusion inhibitor peptides that specifically interfere with the N-terminal region of gp41 are embedded within the membrane in order to properly interact with their viral target.


Subject(s)
Cell Membrane/metabolism , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Peptides/metabolism , Peptides/pharmacology , Amino Acid Sequence , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , Humans , Micelles , Peptides/chemistry , Protein Domains , Proton Magnetic Resonance Spectroscopy , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Tryptophan/metabolism
19.
J Biomed Mater Res A ; 107(1): 114-121, 2019 01.
Article in English | MEDLINE | ID: mdl-30256518

ABSTRACT

Alginate-based hydrogels represent promising microenvironments for cell culture and tissue engineering, as their mechanical and porous characteristics are adjustable toward in vivo conditions. However, alginate scaffolds are bioinert and thus inhibit cellular interactions. To overcome this disadvantage, bioactive alginate surfaces were produced by conjugating tyramine molecules to high-molecular-weight alginates using the carbodiimide chemistry. Structural elucidation using nuclear magnetic resonance spectroscopy and contact angle measurements revealed a surface chemistry and wettability of tyramine-alginate hydrogels similar to standard cell culture treated polystyrene. In contrast to stiff cell culture plastic, tyramine-alginate scaffolds were found to be soft (60-80 kPa), meeting the elastic moduli of human tissues such as liver and heart. We further demonstrated an enhanced protein adsorption with increasing tyramine conjugation, stable for several weeks. Cell culture studies with human mesenchymal stem cells and human pluripotent stem cell-derived cardiomyocytes qualified tyramine-alginate hydrogels as bioactive platforms enabling cell adhesion and contraction on (structured) 2-D layer and spherical matrices. Due to the alginate functionalization with tyramines, stable cell-matrix interactions were observed beneficial for an implementation in biology, biotechnology, and medicine toward efficient cell culture and tissue substitutes. © 2018 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 114-121, 2019.


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Induced Pluripotent Stem Cells/metabolism , Materials Testing , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Tissue Scaffolds/chemistry , Tyramine/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Wettability
20.
J Mater Sci Mater Med ; 29(7): 105, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29961123

ABSTRACT

The surface charge of a biomaterial represents a promising tool to direct cellular behavior, which is crucial for therapeutic approaches in regenerative medicine. To expand the understanding of how the material surface charge affects protein adsorption and mesenchymal stem cell behavior, differently charged surfaces with zeta potentials spanning from -25 mV to +15 mV were fabricated by the conjugation of poly(amidoamine) to alginate-based hydrogels. We showed that the increase of the biomaterials surface charge resulted in enhanced quantities of biologically available, surface-attached proteins. Since different surface charges were equalized after protein adsorption, mesenchymal stem cells interacted rather with diverse protein compositions instead of different surface features. Besides an enhanced cell attachment to increasingly positively charged surfaces, the cell spreading area and the expression of adhesion-related genes integrin α5 and tensin 1 were found to be increased after adhesion. Moreover, first results indicate a potential impact of the surface charge on mesenchymal stem cell differentiation towards bone and fat cells. The improved understanding of surface charge-related cell behavior has significant impact on the design of biomedical devices and artificial organs.


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Polyamines/chemistry , Adsorption , Biocompatible Materials/chemistry , Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Integrin alpha5/metabolism , Microscopy, Electron, Scanning , Phenotype , Spectrum Analysis, Raman , Surface Properties , Tensins/metabolism , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...