Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Geosci ; 7: 768-776, 2014.
Article in English | MEDLINE | ID: mdl-29263751

ABSTRACT

Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.

2.
Appl Opt ; 40(21): 3559-71, 2001 Jul 20.
Article in English | MEDLINE | ID: mdl-18360385

ABSTRACT

To investigate the atmosphere of Earth and to detect changes in its environment, the Environmental Satellite will be launched by the European Space Agency in a polar orbit in October 2001. One of its payload instruments is a Fourier spectrometer, the Michelson Interferometer for Passive Atmospheric Sounding, designed to measure the spectral thermal emission of molecules in the atmosphere in a limb-viewing mode. The goal of this experiment is to derive operationally vertical profiles of pressure and temperature as well as of trace gases O(3), H(2)O, CH(4), N(2)O, NO(2), and HNO(3) from spectra on a global scale. A major topic in the analysis of the computational methodology for obtaining the profiles is how available a priori knowledge can be used and how this a priori knowledge affects corresponding results. Retrieval methods were compared and it was shown that an optimal estimation formalism can be used in a highly flexible way for this kind of data analysis. Beyond this, diagnostic tools, such as estimated standard deviation, vertical resolution, or degrees of freedom, have been used to characterize the results. Optimized regularization parameters have been determined, and a great effect from the choice of regularization and discretization on the results was demonstrated. In particular, we show that the optimal estimation formalism can be used to emulate purely smoothing constraints.

3.
Appl Opt ; 39(8): 1323-40, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-18338017

ABSTRACT

An optimized code to perform the near-real-time retrieval of profiles of pressure, temperature, and volume mixing ratio (VMR) of five key species (O(3), H(2)O, HNO(3), CH(4), and N(2)O) from infrared limb spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment on board the European Space Agency (ESA) Environmental Satellite ENVISAT-1 was developed as part of a ESA-supported study. The implementation uses the global fit approach on selected narrow spectral intervals (microwindows) to retrieve each profile in sequence. The trade-off between run time and accuracy of the retrieval was optimized from both the physical and the mathematical points of view, with optimizations in the program structure, in the radiative transfer model, and in the computation of the retrieval Jacobian. The attained performances of the retrieval code are noise error on temperature <2 K at all the altitudes covered by the typical MIPAS scan (8-53 km with 3-km resolution), noise error on tangent pressure <3%, and noise error on VMR of the target species <5% at most of the altitudes covered by the standard MIPAS scan, with a total run time of less than 1 min on a modern workstation.

4.
Appl Opt ; 39(30): 5531-40, 2000 Oct 20.
Article in English | MEDLINE | ID: mdl-18354550

ABSTRACT

For data analysis of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) atmospheric limb emission spectroscopic experiment on Environmental Satellite microwindows, i.e., small spectral regions for data analysis, have been defined and optimized. A novel optimization scheme has been developed for this purpose that adjusts microwindow boundaries such that the total retrieval error with respect to measurement noise, parameter uncertainties, and systematic errors is minimized. Dedicated databases that contain optimized microwindows for retrieval of vertical profiles of pressure and temperature, H2O, O3, HNO3, CH4, N2O, and NO2 have been generated. Furthermore, a tool for optimal selection of subsets of predefined microwindows for specific retrieval situations has been provided. This tool can be used further for estimating total retrieval errors for a selected microwindow subset. It has been shown by use of this tool that an altitude-dependent definition of microwindows is superior to an altitude-independent definition. For computational efficiency a dedicated microwindow-related list of spectral lines has been defined that contains only those spectral lines that are of relevance for MIPAS limb sounding observations.

5.
Appl Opt ; 37(33): 7661-9, 1998 Nov 20.
Article in English | MEDLINE | ID: mdl-18301602

ABSTRACT

In atmospheric Fourier transform spectroscopy so-called microwindows are usually analyzed for retrieval of trace constituents rather than the spectrum as a whole. These microwindows, which are sets of consecutive spectral grid points, contain one or more prominent transitions of the target species, whereas it is desirable for the signal of interfering species to be minimum. An objective, quantitative method is presented to optimize the microwindow boundaries with respect to random errors, signal of interfering species, other parameter and systematic errors and to select optimum microwindows with respect to their associated retrieval errors. Case studies for N(2)O microwindows are performed for a spaceborne limb emission experiment to assess the dependence of the optimum microwindow width on the retrieval concept.

SELECTION OF CITATIONS
SEARCH DETAIL
...