Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 355(5): e2100497, 2022 May.
Article in English | MEDLINE | ID: mdl-35174898

ABSTRACT

The quest for isoform-selective and specific ATP-competitive protein kinase inhibitors is of great interest, as inhibitors with these qualities will come with reduced toxicity and improved efficacy. However, creating such inhibitors is very challenging due to the high molecular similarity of kinases ATP active sites. To achieve selectivity for our casein kinase (CK) 1 inhibitor series, we elected to endow our previous CK1δ-hit, 3-(4-fluorophenyl)-5-isopropyl-4-(pyridin-4-yl)isoxazole (1), with chiral iminosugar scaffolds. These scaffolds were attached to C5 of the isoxazole ring, a position deemed favorable to facilitate binding interactions with the ribose pocket/solvent-open area of the ATP binding pocket of CK1δ. Here, we describe the synthesis of analogs of 1 ((-)-/(+)-34, (-)-/(+)-48), which were prepared in 13 steps from enantiomerically pure ethyl (3R,4S)- and ethyl (3S,4R)-1-benzyl-4-[(tert-butyldimethylsilyl)oxy]-5-oxopyrrolidine-3-carboxylate ((-)-11 and (+)-11), respectively. The synthesis involved the coupling of Weinreb amide-activated chiral pyrrolidine scaffolds with 4- and 2-fluoro-4-picoline and reaction of the resulting 4-picolyl ketone intermediates ((-)-/(+)-40 and (-)-/(+)-44) with 4-fluoro-N-hydroxybenzenecarboximidoyl chloride to form the desired isoxazole ring. The activity of the compounds against human CK1δ, -ε, and -α was assessed in recently optimized in vitro assays. Compound (-)-34 was the most active compound with IC50 values (CK1δ/ε) of 1/8 µM and displayed enhanced selectivity toward CK1δ.


Subject(s)
Casein Kinase Idelta , Adenosine Triphosphate/metabolism , Casein Kinase Idelta/chemistry , Casein Kinase Idelta/metabolism , Humans , Isoxazoles/chemistry , Isoxazoles/pharmacology , Protein Kinase Inhibitors , Structure-Activity Relationship
2.
Angew Chem Int Ed Engl ; 59(30): 12450-12454, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32501642

ABSTRACT

Tetrahydrocarbazoles and perhydrocyclohepta[b]indoles undergo a catalytic cascade singlet oxygenation in alkaline medium, which leads to chiral tricyclic perhydropyrido- and perhydroazepino[1,2-a]indoles in a single operation. These photooxygenation products are new synthetic equivalents of uncommon C,N-diacyliminium ions and can be functionalized with the aid of phosphoric acid organocatalysis.

3.
Molecules ; 24(5)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30832206

ABSTRACT

In this study, we report on the modification of a 3,4-diaryl-isoxazole-based CK1 inhibitor with chiral pyrrolidine scaffolds to develop potent and selective CK1 inhibitors. The pharmacophore of the lead structure was extended towards the ribose pocket of the adenosine triphosphate (ATP) binding site driven by structure-based drug design. For an upscale compatible multigram synthesis of the functionalized pyrrolidine scaffolds, we used a chiral pool synthetic route starting from methionine. Biological evaluation of key compounds in kinase and cellular assays revealed significant effects of the scaffolds towards activity and selectivity, however, the absolute configuration of the chiral moieties only exhibited a limited effect on inhibitory activity. X-ray crystallographic analysis of ligand-CK1δ complexes confirmed the expected binding mode of the 3,4-diaryl-isoxazole inhibitors. Surprisingly, the original compounds underwent spontaneous Pictet-Spengler cyclization with traces of formaldehyde during the co-crystallization process to form highly potent new ligands. Our data suggests chiral "ribose-like" pyrrolidine scaffolds have interesting potential for modifications of pharmacologically active compounds.


Subject(s)
Casein Kinase Idelta/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Isoxazoles/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Casein Kinase Idelta/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Ligands , Multiprotein Complexes/chemistry , Pyrrolidines/chemistry , Structure-Activity Relationship
4.
Chemistry ; 24(40): 10253-10259, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29750377

ABSTRACT

Few natural oxindole alkaloids possess an exceptional spiro-[(1,3)oxazinan-3,6'-oxindole] core structure, which results from an unusual oxidative indole rearrangement. The Rauvolfia alkaloid reserpine can be converted into the spirooxindole-1,3-oxazines dioxyreserpine and trioxyreserpine through efficient visible-light catalytic photooxygenation with anthraquinone photocatalysts. A mechanistic investigation sheds new light on the photooxidative rearrangement of reserpine and related monoterpene indole alkaloids, and the spirooxindole-1,3-oxazine products can be valorized by reductive ring opening, to obtain cis-decahydroisoquinolines as new enantiopure synthetic building blocks, as demonstrated for dioxyreserpine.

5.
ACS Med Chem Lett ; 7(10): 962-966, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27774137

ABSTRACT

Dabrafenib (Tafinlar) was approved in 2013 by the FDA as a selective single agent treatment for patients with BRAFV600E mutation-positive advanced melanoma. One year later, a combination of dabrafenib and trametinib was used for treatment of BRAFV600E/K mutant metastatic melanoma. In the present study, we report on hitherto not described photosensitivity of dabrafenib both in organic and aqueous media. The half-lives for dabrafenib degradation were determined. Moreover, we revealed photoinduced chemical conversion of dabrafenib to its planar fluorescent derivative dabrafenib_photo 2. This novel compound could be isolated and biologically characterized in vitro. Both enzymatic and cellular assays proved that 2 is still a potent BRAFV600E inhibitor. The intracellular formation of 2 from dabrafenib upon ultraviolet irradiation is shown. The herein presented findings should be taken in account when handling dabrafenib both in preclinical research and in clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...