Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(9): 094311, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21913767

ABSTRACT

We present an efficient approach to the determination of two-dimensional potential energy surfaces for use in quantum reactive scattering simulations. Our method involves first determining the minimum energy path (MEP) for the reaction by means of an ab initio intrinsic reaction coordinate calculation. This one-dimensional potential is then corrected to take into account the zero point energies of the spectator modes. These are determined from Hessians in curvilinear coordinates after projecting out the modes to be explicitly treated in quantum scattering calculations. The final (1+1)-dimensional potential is constructed by harmonic expansion about each point along the MEP before transforming the whole surface to hyperspherical coordinates for use in the two-dimensional scattering simulations. This new method is applied to H-atom abstraction from methane, ethane and propane. For the latter, both reactive channels (producing i-C(3)H(7) or n-C(3)H(7)) are investigated. For all reactions, electronic structure calculations are performed using an efficient, explicitly correlated, coupled cluster methodology (CCSD(T)-F12). Calculated thermal rate constants are compared to experimental and previous theoretical results.

2.
Phys Chem Chem Phys ; 11(3): 463-75, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19283263

ABSTRACT

We present an extension of our earlier work on adaptive quantum wavepacket dynamics [B. Hartke, Phys. Chem. Chem. Phys., 2006, 8, 3627]. In this dynamically pruned basis representation the wavepacket is only stored at places where it has non-negligible contributions. Here we enhance the former 1D proof-of-principle implementation to higher dimensions and optimize it by a new basis set, interpolating Gaussians with collocation. As a further improvement the Tnum approach from Lauvergnat and Nauts [J. Chem. Phys., 2002, 116, 8560] was implemented, which in combination with our adaptive representation offers the possibility of calculating the whole Hamiltonian on-the-fly. For a two-dimensional artificial benchmark and a three-dimensional real-life test case, we show that a sparse matrix implementation of this approach saves memory compared to traditional basis representations and comes even close to the efficiency of the fast Fourier transform method. Thus we arrive at a quantum wavepacket dynamics implementation featuring several important black-box characteristics: it can treat arbitrary systems without code changes, it calculates the kinetic and potential part of the Hamiltonian on-the-fly, and it employs a basis that is automatically optimized for the ongoing wavepacket dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...