Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Blood ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941598

ABSTRACT

T-prolymphocytic leukemia (T-PLL) is a mature T-cell neoplasm associated with marked chemotherapy resistance and continued poor clinical outcomes. Current treatments, i.e. the CD52-antibody alemtuzumab, offer transient responses, with relapses being almost inevitable without consolidating allogeneic transplantation. Recent more detailed concepts of T-PLL's pathobiology fostered the identification of actionable vulnerabilities: (i) altered epigenetics, (ii) defective DNA damage responses, (iii) aberrant cell-cycle regulation, and (iv) deregulated pro-survival pathways, including TCR and JAK/STAT signaling. To further develop related pre-clinical therapeutic concepts, we studied inhibitors of (H)DACs, BCL2, CDK, MDM2, and clas-sical cytostatics, utilizing (a) single-agent and combinatorial compound testing in 20 well-characterized and molecularly-profiled primary T-PLL (validated by additional 42 cases), and (b) 2 independent murine models (syngeneic transplants and patient-derived xenografts). Overall, the most efficient/selective single-agents and combinations (in vitro and in mice) in-cluded Cladribine, Romidepsin ((H)DAC), Venetoclax (BCL2), and/or Idasanutlin (MDM2). Cladribine sensitivity correlated with expression of its target RRM2. T-PLL cells revealed low overall apoptotic priming with heterogeneous dependencies on BCL2 proteins. In additional 38 T-cell leukemia/lymphoma lines, TP53 mutations were associated with resistance towards MDM2 inhibitors. P53 of T-PLL cells, predominantly in wild-type configuration, was amenable to MDM2 inhibition, which increased its MDM2-unbound fraction. This facilitated P53 activa-tion and down-stream signals (including enhanced accessibility of target-gene chromatin re-gions), in particular synergy with insults by Cladribine. Our data emphasize the therapeutic potential of pharmacologic strategies to reinstate P53-mediated apoptotic responses. The identified efficacies and their synergies provide an informative background on compound and patient selection for trial designs in T-PLL.

2.
J Med Chem ; 64(12): 8486-8509, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34101461

ABSTRACT

Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as stand-alone or in combination with targeted drugs.


Subject(s)
Antineoplastic Agents/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Leukemia, Prolymphocytic, T-Cell/drug therapy , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Bendamustine Hydrochloride/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Synergism , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Male , Mice , Molecular Docking Simulation , Molecular Structure , Pyrrolidines/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , para-Aminobenzoates/pharmacology
3.
Curr Hematol Malig Rep ; 15(2): 113-124, 2020 04.
Article in English | MEDLINE | ID: mdl-32034661

ABSTRACT

PURPOSE OF REVIEW: T cell prolymphocytic leukemia (T-PLL) is a rare mature T cell tumor. Available treatment options in this aggressive disease are largely inefficient and patient outcomes are highly dissatisfactory. Current therapeutic strategies mainly employ the CD52-antibody alemtuzumab as the most active single agent. However, sustained remissions after sole alemtuzumab-based induction are exceptions. Responses after available second-line strategies are even less durable. More profound disease control or rare curative outcomes can currently only be expected after a consolidating allogeneic hematopoietic stem cell transplantation (allo-HSCT) in best first response. However, only 30-50% of patients are eligible for this procedure. Major advances in the molecular characterization of T-PLL during recent years have stimulated translational studies on potential vulnerabilities of the T-PLL cell. We summarize here the current state of "classical" treatments and critically appraise novel (pre)clinical strategies. RECENT FINDINGS: Alemtuzumab-induced first remissions, accomplished in ≈ 90% of patients, last at median ≈ 12 months. Series on allo-HSCT in T-PLL, although of very heterogeneous character, suggest a slight improvement in outcomes among transplanted patients within the past decade. Dual-action nucleosides such as bendamustine or cladribine show moderate clinical activity as single agents in the setting of relapsed or refractory disease. Induction of apoptosis via reactivation of p53 (e.g., by inhibitors of HDAC or MDM2) and targeting of its downstream pathways (i.e., BCL2 family antagonists, CDK inhibitors) are promising new approaches. Novel strategies also focus on inhibition of the JAK/STAT pathway with the first clinical data. Implementations of immune-checkpoint blockades or CAR-T cell therapy are at the stage of pre-clinical assessments of activity and feasibility. The recommended treatment strategy in T-PLL remains a successful induction by infusional alemtuzumab followed by a consolidating allo-HSCT in eligible patients. Nevertheless, long-term survivors after this "standard" comprise only 10-20%. The increasingly revealed molecular make-up of T-PLL and the tremendous expansion of approved targeted compounds in oncology represent a "never-before" opportunity to successfully tackle the voids in T-PLL. Approaches, e.g., those reinstating deficient cell death execution, show encouraging pre-clinical and first-in-human results in T-PLL, and urgently have to be transferred to systematic clinical testing.


Subject(s)
Alemtuzumab/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Hematopoietic Stem Cell Transplantation/trends , Leukemia, Prolymphocytic, T-Cell/therapy , Molecular Targeted Therapy/trends , Alemtuzumab/adverse effects , Animals , Antineoplastic Agents, Immunological/adverse effects , Diffusion of Innovation , Forecasting , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/mortality , Humans , Immunotherapy, Adoptive/trends , Leukemia, Prolymphocytic, T-Cell/diagnosis , Leukemia, Prolymphocytic, T-Cell/immunology , Leukemia, Prolymphocytic, T-Cell/mortality , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/mortality , Receptors, Chimeric Antigen/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...