Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 103: 109760, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349443

ABSTRACT

In the design of macroporous biomaterial scaffolds, attention is payed predominantly to the readily accessible macroscopic mechanical properties rather than to the mechanical properties experienced by the cells adhering to the material. However, the direct cell mechanical environment has been shown to be of special relevance for biological processes such as proliferation, differentiation and extracellular matrix formation both in vitro and in vivo. In this study we investigated how individual architectural features of highly aligned macroporous collagen scaffolds contribute to its mechanical properties on the macroscopic vs. the microscopic scale. Scaffolds were produced by controlled freezing and freeze-drying, a method frequently used for manufacturing of macroporous biomaterials. The individual architectural features of the biomaterial were carefully characterized to develop a finite element model (FE-model) that finally provided insights in the relation between the biomaterial's mechanical properties on the macro-scale and the properties on the micro-scale, as experienced by adhering cells. FE-models were validated by experimental characterization of the scaffolds, both on the macroscopic and the microscopic level, using mechanical compression testing and atomic force microscopy. As a result, a so-called cell-effective stiffness of these non-trivial scaffold architectures could be predicted for the first time. A linear dependency between the macroscopic scaffold stiffness and the cell-effective stiffness was found, with the latter being consistently higher by a factor of 6.4 ±â€¯0.6. The relevance of the cell-effective stiffness in controlling progenitor cell differentiation was confirmed in vitro. The obtained information about the cell-effective stiffness is of particular relevance for the early stages of tissue regeneration, when the cells first populate and interact with the biomaterial. Beyond the specific biomaterial investigated here, the introduced method is transferable to other complex biomaterial architectures. Design-optimization in 3D macroporous scaffolds that are based on a deeper understanding of the mechanical environment provided to the cells will help to enhance biomaterial-based tissue regeneration approaches.


Subject(s)
Collagen/chemistry , Mesenchymal Stem Cells/cytology , Tissue Scaffolds , Biomechanical Phenomena , Cell Differentiation , Elastic Modulus , Fibronectins/chemistry , Humans , Materials Testing , Microscopy, Atomic Force , Porosity
2.
Soft Matter ; 14(20): 4029-4039, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29670976

ABSTRACT

Doping polymer brushes with gold nanoparticles (AuNPs) results in composite materials with colorimetric sensor properties. The present paper addresses the effect of electrostatic particle-particle interaction and the effect of the polymer brush type on particle assembly formation within the polymer matrix. The prospect for long-term use as colorimetric sensors is tested. Therefore, two different types of brushes of pH-insensitive polymers, non-ionic poly(N-isopropylacrylamide) (PNIPAM) and cationic poly-[2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMETAC), are studied. After incubation of the non-ionic PNIPAM brush in an aqueous suspension of AuNPs with a pH-sensitive carboxylic acid capping, hydrogen binding led to attachment of the AuNPs, but they were easily detached at high pH due to loss of the hydrogen binding. In contrast, the anionic AuNPs adhere well to cationic PMETAC brushes even after post-treatment at low pH where the charge density of the AuNPs is strongly reduced. Therefore, the PMETAC/AuNP composites were further tested with respect to their stability against pH variations and their impact for colorimetric sensors. Although the neat PMETAC brush is not pH-sensitive, after embedding pH-sensitive AuNPs, the PMETAC/AuNP composite becomes pH-sensitive in a reversible manner. This is detectable by the reversible shift of the plasmon band and the reversible thickness change of the composites by exposing them to different pH.

3.
Phys Chem Chem Phys ; 19(45): 30636-30646, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29116265

ABSTRACT

This work addresses the pH-triggered distribution and relocation of charge-stabilized gold nanoparticles (AuNPs) incorporated into strong polyelectrolyte brushes. Brush/particle composite materials were investigated under aqueous conditions and at different humidities using neutron and X-ray reflectivity, respectively. X-ray reflectivity measurements complement neutron reflectivity measurements and reveal results that could not be observed by neutron reflectivity measurements. Both methods allow scanning the particle density profile, but due to different contrasts, they are sensitive to different regions within the brush. More specifically, 3-mercaptopropionic acid (MPA)-coated AuNPs were incorporated into poly-[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) polyelectrolyte brushes at different pH values. The pH value triggers a change in the AuNP surface charge caused by the pH-sensitivity of the MPA ligands, while the charge of the PMETAC brush is not affected by pH variations. The particle number density as well as the particle distribution depend strongly on the pH value of the incubation medium: a rather non-homogeneous assembly (2D assembly) is found when the PMETAC brush is incubated in AuNP suspension at pH 4, while a more homogeneous assembly (3D assembly) is found when the PMETAC brush is incubated in AuNP suspension at pH 8. The main factor dominating the formation of 2D or 3D assembly is assigned to the particle-particle interaction and not to the particle-polymer interaction. No significant relocation of AuNPs within the brush can be found by changing the environmental conditions. The control of particle amount and distribution within the polymer brush has a strong impact on the optical properties of those composite materials, which is crucial for the fabrication of colorimetric sensors.

4.
Phys Chem Chem Phys ; 17(19): 12771-7, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25906292

ABSTRACT

Polyelectrolyte multilayers serve as effective reservoirs for bioactive molecules which are stored and released from the multilayers for cellular applications. However, control over the release without significantly affecting the multilayers and biomolecules is still a challenge. On the other hand, externally stimulated release would make the multilayers promising for the development of stimuli-sensitive planar carriers with release performance switched on demand. In this study soft composite films are designed by coating hyaluronic acid/poly-l-lysine (HA/PLL) multilayers with temperature responsive poly(N-isopropylacrylamide) (PNIPAM) microgels. Microgels are flattened and immersed into the multilayers to maximize the number of contacts with the surrounding polyelectrolytes (HA and PLL). The microgel coating serves as an efficient switchable barrier for the PLL transport into the multilayers. PLL diffusion into the film is significantly hindered at room temperature but is dramatically enhanced at 40 °C above the volume phase transition temperature (VPTT) of PNIPAM at 32 °C associated with microgel shrinkage. Scanning force microscopy micrographs show that the mechanism of volume phase transition on soft surfaces cannot be directly deduced from the processes taking place at solid substrates.


Subject(s)
Acrylic Resins/chemistry , Temperature , Adsorption , Diffusion , Fluorescent Dyes/chemistry , Gels
5.
Chem Commun (Camb) ; 51(14): 2907-10, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25582497

ABSTRACT

Photoresponsive surfactant system based on fatty acids has been developed by the introduction in aqueous solution of a photoacid generator (PAG). Self-assembly transitions are triggered by UV irradiation due to a pH change induced by the presence of PAG.


Subject(s)
Photochemical Processes , Stearic Acids/chemistry , Choline/chemistry , Hydrogen-Ion Concentration , Surface-Active Agents/chemistry
6.
Phys Chem Chem Phys ; 13(21): 10318-25, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21523268

ABSTRACT

This study addresses the effect of ionic strength and type of ions on the structure and water content of polyelectrolyte multilayers. Polyelectrolyte multilayers of poly(sodium-4-styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared at different NaF, NaCl and NaBr concentrations have been investigated by neutron reflectometry against vacuum, H(2)O and D(2)O. Both thickness and water content of the multilayers increase with increasing ionic strength and increasing ion size. Two types of water were identified, "void water" which fills the voids of the multilayers and does not contribute to swelling but to a change in scattering length density and "swelling water" which directly contributes to swelling of the multilayers. The amount of void water decreases with increasing salt concentration and anion radius while the amount of swelling water increases with salt concentration and anion radius. This is interpreted as a denser structure in the dry state and larger ability to swell in water (sponge) for multilayers prepared from high ionic strengths and/or salt solution of large anions. No exchange of hydration water or replacement of H by D was detected even after eight hours incubation time in water of opposing isotopic composition.

7.
Adv Colloid Interface Sci ; 155(1-2): 19-31, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20206329

ABSTRACT

The review addresses the effect of geometrical confinement on the structure formation of colloidal dispersions like particle suspensions, (non)micellar surfactant solutions, polyelectrolyte solutions and mixed dispersions. The dispersions are entrapped either between two fluid interfaces (foam film) in a Thin Film Pressure Balance (TFPB) or between two solid interfaces in a Colloidal Probe Atomic Force Microscope (Colloidal Probe AFM) or a Surface Force Apparatus (SFA). The oscillating concentration profile in front of the surface leads to an oscillating force during film thinning. It is shown that the characteristic lengths like the distance between particles, the distance between micelles, or the mesh size of the polymer network remain the same during the confining process. The influence of different parameters like ionic strength, molecular structure, and the properties of the outer surfaces on the structure formation are reported. The confinement of mixed dispersions might lead to phase separation and capillary condensation, which in turn causes a pronounced attraction between the two opposing film surfaces.

8.
Adv Colloid Interface Sci ; 155(1-2): 32-49, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20167304

ABSTRACT

Addition of surfactants to aqueous solutions of polyelectrolytes carrying an opposite charge causes the spontaneous formation of complexes in the bulk phase in certain concentration ranges. Under some conditions, compact monodisperse multichain complexes are obtained in the bulk. The size of these complexes depends on the mixing procedure and it can be varied in a controlled way from nanometers up to micrometers. The complexes exhibit microstructures analogous to those of the precipitates formed at higher concentrations. In other cases, however, the bulk complexes are large, soft and polydisperse. In most cases, the dispersions are only kinetically stable and exhibit pronounced non-equilibrium features. Association at air-water interfaces readily occurs, even at very small concentrations. When the surfactant concentration is small, the surface complexes are usually made of a surfactant monolayer to which the polymer binds and adsorbs in a flat-like configuration. However, under some conditions, thicker layers can be found, with bulk complexes sticking to the surface. The association at solid-water interfaces is more complex and depends on the specific interactions between surfactants, polymers and the surface. However, the behaviour can be understood if distinctions between hydrophilic surfaces and hydrophobic surfaces are made. Note that the behaviour at air-water interfaces is closer to that of hydrophobic than that of hydrophilic solid surfaces. The relation between bulk and surface complexation will be discussed in this review. The emphasis will be given to the results obtained by the teams of the EC-funded Marie Curie RTN "SOCON".

10.
J Acoust Soc Am ; 95(4): 2192-201, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8201115

ABSTRACT

Masked thresholds were measured with running- and frozen-noise maskers. The 5-kHz signal was 2 ms in duration. The masker was low-pass noise (20 Hz-10 kHz); its total duration was 300 ms. The overall level of the masker was 30, 50, or 70 dB SPL. The onset of the signal was delayed by 0, 3, 8, 18, 198, or 278 ms relative to the onset of the masker. In all frozen-noise measurements, the signal was added to the same fine structure of the noise. Overshoot in frozen noise was measured for two starting phases of the signal that led to a 10-dB difference for large signal-onset delays. In all three configurations (running noise and frozen noise with two different signal phases) masker level had a similar influence on overshoot. At the intermediate masker level (50 dB SPL), a significant amount of overshoot (up to 15 dB) was observed in all three conditions. At the low and the high masker levels, overshoot was very much reduced, and even became negative in most conditions for the 30-dB-SPL masker. For the 50-dB frozen-noise masker, the total variation of thresholds with signal phase was 8 to 11 dB for long signal-onset delays, but only 3 to 6 dB for short delays. For the low- and high-level maskers, where only a small overshoot was observed, the threshold variation with phase for a signal at masker onset was the same as that for the long-delay condition. An explanation for the variation of signal detectability with masker level is proposed that refers explicitly to the compressive input-output characteristic of the basilar membrane at intermediate levels.


Subject(s)
Attention , Loudness Perception , Noise , Perceptual Masking , Pitch Discrimination , Adult , Attention/physiology , Basilar Membrane/physiology , Female , Humans , Loudness Perception/physiology , Male , Nerve Fibers/physiology , Perceptual Masking/physiology , Pitch Discrimination/physiology , Psychoacoustics , Reaction Time/physiology , Vestibulocochlear Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...