Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cancer Res Commun ; 4(6): 1430-1440, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38717161

ABSTRACT

The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results. We therefore set out to examine whether the combination of copanlisib, a clinical grade pan-PI3K inhibitor, and eribulin, an antimitotic chemotherapy approved for taxane-resistant metastatic breast cancer, improves the antitumor effect in TNBC. A panel of eight TNBC patient-derived xenograft (PDX) models was tested for tumor growth response to copanlisib and eribulin, alone or in combination. Treatment-induced signaling changes were examined by reverse phase protein array, immunohistochemistry (IHC) and 18F-fluorodeoxyglucose PET (18F-FDG PET). Compared with each drug alone, the combination of eribulin and copanlisib led to enhanced tumor growth inhibition, which was observed in both eribulin-sensitive and -resistant TNBC PDX models, regardless of PI3K pathway alterations or PTEN status. Copanlisib reduced PI3K signaling and enhanced eribulin-induced mitotic arrest. The combination enhanced induction of apoptosis compared with each drug alone. Interestingly, eribulin upregulated PI3K pathway signaling in PDX tumors, as demonstrated by increased tracer uptake by 18F-FDG PET scan and AKT phosphorylation by IHC. These changes were inhibited by the addition of copanlisib. These data support further clinical development for the combination of copanlisib and eribulin and led to a phase I/II trial of copanlisib and eribulin in patients with metastatic TNBC. SIGNIFICANCE: In this research, we demonstrated that the pan-PI3K inhibitor copanlisib enhanced the cytotoxicity of eribulin in a panel of TNBC PDX models. The improved tumor growth inhibition was irrespective of PI3K pathway alteration and was corroborated by the enhanced mitotic arrest and apoptotic induction observed in PDX tumors after combination therapy compared with each drug alone. These data provide the preclinical rationale for the clinical testing in TNBC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Furans , Ketones , Pyrimidines , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Ketones/pharmacology , Ketones/administration & dosage , Ketones/therapeutic use , Animals , Furans/pharmacology , Furans/administration & dosage , Furans/therapeutic use , Humans , Female , Mice , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Apoptosis/drug effects , Quinazolines/pharmacology , Quinazolines/administration & dosage , Quinazolines/therapeutic use , Signal Transduction/drug effects , Cell Proliferation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Polyether Polyketides
2.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38441968

ABSTRACT

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Humans , Pyruvic Acid/metabolism , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted , Heart , Liver/diagnostic imaging , Liver/metabolism , Carbon Isotopes/metabolism
3.
Magn Reson Med ; 92(2): 459-468, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38469685

ABSTRACT

PURPOSE: To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS: An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS: Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation by ß $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION: These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.


Subject(s)
Caffeine , Liver , Nitrogen Isotopes , Caffeine/pharmacology , Caffeine/chemistry , Animals , Rats , Liver/diagnostic imaging , Liver/metabolism , Male , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/metabolism , Rats, Sprague-Dawley , Magnetic Resonance Spectroscopy , Liver Function Tests
4.
Magn Reson Med ; 92(2): 772-781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38525658

ABSTRACT

PURPOSE: To develop a flexible, vendor-neutral EPI sequence for hyperpolarized 13C metabolic imaging. METHODS: An open-source EPI sequence consisting of a metabolite-specific spectral-spatial RF excitation pulse and a customizable EPI readout was created using the Pulseq framework. To explore the flexibility of our sequence, we tested several versions of the sequence including a symmetric 3D readout with different spatial resolutions for each metabolite (1.0 cm3 and 1.5 cm3). A multichamber phantom constructed with a Shepp-Logan geometry, containing two chambers filled with either natural abundance 13C compounds or hyperpolarized (HP) [1-13C]pyruvate, was used to test each sequence. For experiments involving HP [1-13C]pyruvate, a single chamber was prefilled with nicotinamide adenine dinucleotide hydride and lactate dehydrogenase to facilitate the conversion of [1-13C]pyruvate to [1-13C]lactate. All experiments were performed on a Siemens Prisma 3T scanner. RESULTS: All the sequence variations localized natural-abundance 13C ethylene glycol and methanol to the appropriate compartment of the multichamber phantom. [1-13C]pyruvate was detectable in both chambers following the injection of HP [1-13C]pyruvate, whereas [1-13C]lactate was only found in the chamber containing nicotinamide adenine dinucleotide hydride and lactate dehydrogenase. The conversion rate from [1-13C]pyruvate to [1-13C]lactate (kPL) was 0.01 s-1 (95% confidence interval [0.00, 0.02]). CONCLUSION: We have developed and tested a vendor-neutral EPI sequence for imaging HP 13C agents. We have made all of our sequence creation and image reconstruction code freely available online for other investigators to use.


Subject(s)
Carbon Isotopes , Phantoms, Imaging , Pyruvic Acid , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Carbon Isotopes/chemistry , Echo-Planar Imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Lactic Acid/chemistry , Algorithms , Humans
5.
Magn Reson Med ; 91(5): 2114-2125, 2024 May.
Article in English | MEDLINE | ID: mdl-38270193

ABSTRACT

PURPOSE: To use the hepatocyte-specific gadolinium-based contrast agent gadoxetate combined with hyperpolarized (HP) [1-13 C]pyruvate MRI to selectively suppress metabolic signals from normal hepatocytes while preserving the signals arising from tumors. METHODS: Simulations were performed to determine the expected changes in HP 13 C MR signal in liver and tumor under the influence of gadoxetate. CC531 colon cancer cells were implanted into the livers of five Wag/Rij rats. Liver and tumor metabolism were imaged at 3 T using HP [1-13 C] pyruvate chemical shift imaging before and 15 min after injection of gadoxetate. Area under the curve for pyruvate and lactate were measured from voxels containing at least 75% of normal-appearing liver or tumor. RESULTS: Numerical simulations predicted a 36% decrease in lactate-to-pyruvate (L/P) ratio in liver and 16% decrease in tumor. In vivo, baseline L/P ratio was 0.44 ± 0.25 in tumors versus 0.21 ± 0.08 in liver (p = 0.09). Following administration of gadoxetate, mean L/P ratio decreased by an average of 0.11 ± 0.06 (p < 0.01) in normal-appearing liver. In tumors, mean L/P ratio post-gadoxetate did not show a statistically significant change from baseline. Compared to baseline levels, the relative decrease in L/P ratio was significantly greater in liver than in tumors (-0.52 ± 0.16 vs. -0.19 ± 0.25, p < 0.05). CONCLUSIONS: The intracellular hepatobiliary contrast agent showed a greater effect suppressing HP 13 C MRI metabolic signals (through T1 shortening) in normal-appearing liver when compared to tumors. The combined use of HP MRI with selective gadolinium contrast agents may allow more selective imaging in HP 13 C MRI.


Subject(s)
Contrast Media , Liver Neoplasms , Rats , Animals , Contrast Media/pharmacology , Gadolinium/pharmacology , Hepatocytes/metabolism , Gadolinium DTPA , Liver/metabolism , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Pyruvates/metabolism , Lactates/metabolism
6.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38115605

ABSTRACT

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Subject(s)
Choline Deficiency , Non-alcoholic Fatty Liver Disease , Rats , Animals , Mice , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Methionine/metabolism , Choline/metabolism , Pyruvic Acid/metabolism , Aspartic Acid/metabolism , Choline Deficiency/complications , Choline Deficiency/metabolism , Choline Deficiency/pathology , Rats, Wistar , Liver/metabolism , Racemethionine/metabolism , Diet , Triglycerides , Alanine/metabolism , Lactates/metabolism , Mice, Inbred C57BL , Disease Models, Animal
7.
ArXiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37731660

ABSTRACT

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.

8.
J Magn Reson Imaging ; 56(6): 1792-1806, 2022 12.
Article in English | MEDLINE | ID: mdl-35420227

ABSTRACT

BACKGROUND: Hyperpolarized 13 C MRI quantitatively measures enzyme-catalyzed metabolism in cancer and metabolic diseases. Whole-abdomen imaging will permit dynamic metabolic imaging of several abdominal organs simultaneously in healthy and diseased subjects. PURPOSE: Image hyperpolarized [1-13 C]pyruvate and products in the abdomens of healthy volunteers, overcoming challenges of motion, magnetic field variations, and spatial coverage. Compare hyperpolarized [1-13 C]pyruvate metabolism across abdominal organs of healthy volunteers. STUDY TYPE: Prospective technical development. SUBJECTS: A total of 13 healthy volunteers (8 male), 21-64 years (median 36). FIELD STRENGTH/SEQUENCE: A 3 T. Proton: T1 -weighted spoiled gradient echo, T2 -weighted single-shot fast spin echo, multiecho fat/water imaging. Carbon-13: echo-planar spectroscopic imaging, metabolite-specific echo-planar imaging. ASSESSMENT: Transmit magnetic field was measured. Variations in main magnetic field (ΔB0 ) determined using multiecho proton acquisitions were compared to carbon-13 acquisitions. Changes in ΔB0 were measured after localized shimming. Improvements in metabolite signal-to-noise ratio were calculated. Whole-organ regions of interests were drawn over the liver, spleen, pancreas, and kidneys by a single investigator. Metabolite signals, time-to-peak, decay times, and mean first-order rate constants for pyruvate-to-lactate (kPL ) and alanine (kPA ) conversion were measured in each organ. STATISTICAL TESTS: Linear regression, one-sample Kolmogorov-Smirnov tests, paired t-tests, one-way ANOVA, Tukey's multiple comparisons tests. P ≤ 0.05 considered statistically significant. RESULTS: Proton ΔB0 maps correlated with carbon-13 ΔB0 maps (slope = 0.93, y-intercept = -2.88, R2  = 0.73). Localized shimming resulted in mean frequency offset within ±25 Hz for all organs. Metabolite SNR significantly increased after denoising. Mean kPL and kPA were highest in liver, followed by pancreas, spleen, and kidneys (all comparisons with liver were significant). DATA CONCLUSION: Whole-abdomen coverage with hyperpolarized carbon-13 MRI was feasible despite technical challenges. Multiecho gradient echo 1 H acquisitions accurately predicted chemical shifts observed using carbon-13 spectroscopy. Carbon-13 acquisitions benefited from local shimming. Metabolite energetics in the abdomen compiled for healthy volunteers can be used to design larger clinical trials in patients with metabolic diseases. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Protons , Pyruvic Acid , Humans , Male , Pyruvic Acid/metabolism , Healthy Volunteers , Prospective Studies , Carbon Isotopes , Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging
9.
Magn Reson Med ; 87(5): 2120-2129, 2022 05.
Article in English | MEDLINE | ID: mdl-34971459

ABSTRACT

PURPOSE: Hyperpolarized (HP) 13 C MRI has enabled real-time imaging of specific enzyme-catalyzed metabolic reactions, but advanced pulse sequences are necessary to capture the dynamic, localized metabolic information. Herein we describe the design, implementation, and testing of a rapid and efficient HP 13 C pulse sequence strategy on a cryogen-free simultaneous positron emission tomography/MR molecular imaging platform with compact footprint. METHODS: We developed an echo planar spectroscopic imaging pulse sequence incorporating multi-band spectral-spatial radiofrequency (SSRF) pulses for spatially coregistered excitation of 13 C metabolites with differential individual flip angles. Excitation profiles were measured in phantoms, and the SSRF-echo planar spectroscopic imaging sequence was tested in rats in vivo and compared to conventional echo planar spectroscopic imaging. The new sequence was applied for 2D dynamic metabolic imaging of HP [1-13 C]pyruvate and its molecular analog [1-13 C] α -ketobutyrate at a spatial resolution of 5 mm × 5 mm × 20 mm and temporal resolution of 4 s. We also obtained simultaneous 18 F-fluorodeoxyglucose positron emission tomography data for comparison with HP [1-13 C]pyruvate data acquired during the same scan session. RESULTS: Measured SSRF excitation profiles corresponded well to Bloch simulations. Multi-band SSRF excitation facilitated efficient sampling of the multi-spectral kinetics of [1-13 C]pyruvate and [1-13 C] α - ketobutyrate . Whereas high pyruvate to lactate conversion was observed in liver, corresponding reduction of α -ketobutyrate to [1-13 C] α -hydroxybutyrate ( α HB) was largely restricted to the kidneys and heart, consistent with the known expression pattern of lactate dehydrogenase B. CONCLUSION: Advanced 13 C SSRF imaging approaches are feasible on our compact positron emission tomography/MR platform, maximizing the potential of HP 13 C technology and facilitating direct comparison with positron emission tomography.


Subject(s)
Echo-Planar Imaging , Pyruvic Acid , Animals , Carbon Isotopes , Echo-Planar Imaging/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Positron-Emission Tomography/methods , Pyruvic Acid/metabolism , Rats
10.
Tomography ; 7(3): 466-476, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34564302

ABSTRACT

Although hyperpolarization (HP) greatly increases the sensitivity of 13C MR, the usefulness of HP in vivo is limited by the short lifetime of HP agents. To address this limitation, we developed an echo-planar (EPI) sequence with spectral-spatial radiofrequency (SSRF) pulses for fast and efficient metabolite-specific imaging of HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T. The spatial and spectral selectivity of each SSRF pulse was verified using simulations and phantom testing. EPI and CSI imaging of the rat abdomen were compared in the same rat after injecting HP [1-13C]pyruvate. A procedure was also developed to automatically set the SSRF excitation pulse frequencies based on real-time scanner feedback. The most significant results of this study are the demonstration that a greater spatial and temporal resolution is attainable by metabolite-specific EPI as compared with CSI, and the enhanced lifetime of the HP signal in EPI, which is attributable to the independent flip angle control between metabolites. Real-time center frequency adjustment was also highly effective for minimizing off-resonance effects. To the best of our knowledge, this is the first demonstration of metabolite-specific HP 13C EPI at 4.7 T. In conclusion, metabolite-specific EPI using SSRF pulses is an effective way to image HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T.


Subject(s)
Echo-Planar Imaging , Pyruvic Acid , Animals , Lactic Acid , Phantoms, Imaging , Radio Waves , Rats
11.
Methods Mol Biol ; 2216: 267-278, 2021.
Article in English | MEDLINE | ID: mdl-33476006

ABSTRACT

Existing clinical markers for renal disease are limited. Hyperpolarized (HP) 13C MRI is based on the technology of dissolution dynamic nuclear polarization (DNP) and provides new avenues for imaging kidney structure, function, and most notably, renal metabolism, addressing some of these prior limitations. Changes in kidney structure and function associated with kidney disease can be evaluated using [13C]urea, a metabolically inert tracer. Metabolic changes can be assessed using [1-13C]pyruvate and a range of other rapidly metabolized small molecules, which mainly probe central carbon metabolism. Results from numerous preclinical studies using a variety of these probes demonstrated that this approach holds great potential for monitoring renal disease, although more work is needed to bridge intelligently into clinical studies. Here we introduce the general concept of HP 13C MRI and review the most relevant probes and applications to renal disease, including kidney cancer, diabetic nephropathy and ischemic kidney injury.This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Subject(s)
Biomarkers/analysis , Carbon Isotopes/analysis , Carbon-13 Magnetic Resonance Spectroscopy/methods , Image Processing, Computer-Assisted/methods , Kidney/physiology , Monitoring, Physiologic/methods , Animals , Humans , Software
12.
Methods Mol Biol ; 2216: 481-493, 2021.
Article in English | MEDLINE | ID: mdl-33476019

ABSTRACT

Alterations in renal metabolism are associated with both physiological and pathophysiologic events. The existing noninvasive analytic tools including medical imaging have limited capability for investigating these processes, which potentially limits current understanding of kidney disease and the precision of its clinical diagnosis. Hyperpolarized 13C MRI is a new medical imaging modality that can capture changes in the metabolic processing of certain rapidly metabolized substrates, as well as changes in kidney function. Here we describe experimental protocols for renal metabolic [1-13C]pyruvate and functional 13C-urea imaging step-by-step. These methods and protocols are useful for investigating renal blood flow and function as well as the renal metabolic status of rodents in vivo under various experimental (patho)physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol is complemented by two separate chapters describing the basic concept and data analysis.


Subject(s)
Biomarkers/analysis , Carbon Isotopes/analysis , Image Processing, Computer-Assisted/methods , Kidney/physiology , Magnetic Resonance Imaging/methods , Animals , Monitoring, Physiologic , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Rats, Wistar , Software
13.
Methods Mol Biol ; 2216: 697-710, 2021.
Article in English | MEDLINE | ID: mdl-33476032

ABSTRACT

Hyperpolarized 13C MR is a novel medical imaging modality with substantially different signal dynamics as compared to conventional 1H MR, thus requiring new methods for processing the data in order to access and quantify the embedded metabolic and functional information. Here we describe step-by-step analysis protocols for functional renal hyperpolarized 13C imaging. These methods are useful for investigating renal blood flow and function as well as metabolic status of rodents in vivo under various experimental physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.


Subject(s)
Carbon Isotopes/analysis , Image Processing, Computer-Assisted/methods , Kidney/physiology , Magnetic Resonance Imaging/methods , Monitoring, Physiologic/methods , Phantoms, Imaging , Animals , Mice , Rats , Software
14.
Magn Reson Med ; 85(1): 518-530, 2021 01.
Article in English | MEDLINE | ID: mdl-32738073

ABSTRACT

PURPOSE: To use fiducial markers containing manganese 55 to rapidly localize carbon 13 (13 C) RF coils for correcting images for B1 variation. METHODS: Hollow high-density polyethylene spheres were filled with 3M sodium permanganate and affixed to a rectangular 13 C-tuned RF coil. The relative positions of the markers and coil conductors were mapped using CT. Marker positions were measured by MRI using a series of 1D projections and automated peak detection. Once the coil location was determined, coil sensitivity was estimated using a quasi-static calculation. Simulations were performed to determine the minimum number of projections required for robust localization. Phantom experiments were used to confirm the accuracy of marker localization as well as the calculated coil sensitivity. Finally, in vivo validation was performed using hyperpolarized 13 C pyruvate in a rat model. RESULTS: In simulations, our algorithm was accurate in determining marker positions when at least 6 projections were used (RMSE 1.4 ± 0.9 mm). These estimates were verified in phantom experiments, where markers locations were determined with an RMS accuracy of 1.3 mm. A minimum SNR of 4 was required for automated detection to perform accurately. Computed coil sensitivity had a median error of 17% when taken over the entire measured area and 5.7% over a central region. In a rat, correction for nonuniform reception and flip angle was able to normalize the signals arising from asymmetrically positioned kidneys. CONCLUSION: Manganese 55 fiducial markers are an inexpensive and reliable method for rapidly localizing 13 C RF coils and correcting 13 C images for B1 variation without user intervention.


Subject(s)
Fiducial Markers , Magnetic Resonance Imaging , Algorithms , Animals , Phantoms, Imaging , Radio Waves , Rats
15.
Magn Reson Med ; 85(4): 1795-1804, 2021 04.
Article in English | MEDLINE | ID: mdl-33247884

ABSTRACT

PURPOSE: The purpose of this study was to directly compare two isotopic metabolic imaging approaches, hyperpolarized (HP) 13 C MRI and deuterium metabolic imaging (DMI), for imaging specific closely related segments of cerebral glucose metabolism at 4.7 T. METHODS: Comparative HP-13 C and DMI neuroimaging experiments were conducted consecutively in normal rats during the same scanning session. Localized conversions of [1-13 C]pyruvate and [6,6-2 H2 ]glucose to their respective downstream metabolic products were measured by spectroscopic imaging, using an identical 2D-CSI sequence with parameters optimized for the respective experiments. To facilitate direct comparison, a pair of substantially equivalent 2.5-cm double-tuned X/1 H RF surface coils was developed. For improved results, multidimensional low-rank reconstruction was applied to denoise the raw DMI data. RESULTS: Localized conversion of HP [1-13 C]pyruvate to [1-13 C]lactate, and [6,6-2 H2 ]glucose to [3,3-2 H2 ]lactate and Glx-d (glutamate and glutamine), was detected in rat brain by spectroscopic imaging at 4.7 T. The SNR and spatial resolution of HP-13 C MRI was superior to DMI but limited to a short time window, whereas the lengthy DMI acquisition yielded maps of not only lactate, but also Glx production, albeit with relatively poor spectral discrimination between metabolites at this field strength. Across the individual rats, there was an apparent inverse correlation between cerebral production of HP [1-13 C]lactate and Glx-d, along with a trend toward increased [3,3-2 H2 ]lactate. CONCLUSION: The HP-13 C MRI and DMI methods are both feasible at 4.7 T and have significant potential for metabolic imaging of specific segments of glucose metabolism.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Animals , Carbon Isotopes , Deuterium , Glucose , Neuroimaging , Rats
16.
Magn Reson Med ; 85(4): 1814-1820, 2021 04.
Article in English | MEDLINE | ID: mdl-33179825

ABSTRACT

PURPOSE: The purpose of this study was to investigate hyperpolarization and in vivo imaging of [15 N]carnitine, a novel endogenous MRI probe with long signal lifetime. METHODS: L-[15 N]carnitine-d9 was hyperpolarized by the method of dynamic nuclear polarization followed by rapid dissolution. The T1 signal lifetimes were estimated in aqueous solution and in vivo following intravenous injection in rats, using a custom-built dual-tuned 15 N/1 H RF coil at 4.7 T. 15 N chemical shift imaging and 15 N fast spin-echo images of rat abdomen were acquired 3 minutes after [15 N]carnitine injection. RESULTS: Estimated T1 times of [15 N]carnitine at 4.7 T were 210 seconds (in H2 O) and 160 seconds (in vivo), with an estimated polarization level of 10%. Remarkably, the [15 N]carnitine coherence was detectable in rat abdomen for 5 minutes after injection for the nonlocalized acquisition. No downstream metabolites were detected on localized or nonlocalized 15 N spectra. Diffuse liver enhancement was detected on 15 N fast spin-echo imaging 3 minutes after injection, with mean hepatic SNR of 18 ± 5 at a spatial resolution of 4 × 4 mm. CONCLUSION: This study showed the feasibility of hyperpolarizing and imaging the biodistribution of HP [15 N]carnitine.


Subject(s)
Carnitine , Magnetic Resonance Imaging , Animals , Radio Waves , Rats , Tissue Distribution
17.
J Magn Reson ; 312: 106691, 2020 03.
Article in English | MEDLINE | ID: mdl-32058912

ABSTRACT

As in conventional 1H MRI, T1 and T2 relaxation times of hyperpolarized (HP) 13C nuclei can provide important biomedical information. Two new approaches were developed for simultaneous T1 and T2 mapping of HP 13C probes based on balanced steady state free precession (bSSFP) acquisitions: a method based on sequential T1 and T2 mapping modules, and a model-based joint T1/T2 approach analogous to MR fingerprinting. These new methods were tested in simulations, HP 13C phantoms, and in vivo in normal Sprague-Dawley rats. Non-localized T1 values, low flip angle EPI T1 maps, bSSFP T2 maps, and Bloch-Siegert B1 maps were also acquired for comparison. T1 and T2 maps acquired using both approaches were in good agreement with both literature values and data from comparative acquisitions. Multiple HP 13C compounds were successfully mapped, with their relaxation time parameters measured within heart, liver, kidneys, and vasculature in one acquisition for the first time.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Heart/diagnostic imaging , Kidney/diagnostic imaging , Liver/diagnostic imaging , Animals , Female , Phantoms, Imaging , Pyruvic Acid/chemistry , Rats , Rats, Sprague-Dawley , Urea/chemistry
18.
NMR Biomed ; 32(3): e4052, 2019 03.
Article in English | MEDLINE | ID: mdl-30664305

ABSTRACT

Hyperpolarized 13 C MRI takes advantage of the unprecedented 50 000-fold signal-to-noise ratio enhancement to interrogate cancer metabolism in patients and animals. It can measure the pyruvate-to-lactate conversion rate, kPL , a metabolic biomarker of cancer aggressiveness and progression. Therefore, it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that modulate kPL estimation were identified and investigated in model simulations and through in vivo animal studies using several specifically designed pulse sequences. These factors included a magnetization spoiling effect due to RF pulses, a crusher gradient-induced flow suppression, and intrinsic image weightings due to relaxation. Simulation showed that the RF-induced magnetization spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a significantly higher apparent kPL with an additional gradient that leads to flow suppression (kPL,FID-Delay,Crush /kPL,FID-Delay  = 1.37 ± 0.33, P < 0.01, N = 6), which agrees with simulation outcomes (12.5% kPL error with Δv = 40 cm/s), indicating that the gradients predominantly suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed free induction decay (FID) acquisition versus a minimum-TE version (kPL,FID-Delay /kPL,FID  = 0.67 ± 0.09, P < 0.01, N = 5), and the lactate peak had broader linewidth than pyruvate (Δωlactate /Δωpyruvate  = 1.32 ± 0.07, P < 0.000 01, N = 13). This illustrated that lactate's T2 *, shorter than that of pyruvate, can affect calculated kPL values. We also found that an FID sequence yielded significantly lower kPL versus a double spin-echo sequence that includes spin-echo spoiling, flow suppression from crusher gradients, and more T2 weighting (kPL,DSE /kPL,FID  = 2.40 ± 0.98, P < 0.0001, N = 7). In summary, the pulse sequence, as well as its interaction with pharmacokinetics and the tissue microenvironment, can impact and be optimized for the measurement of kPL . The data acquisition and analysis pipelines can work synergistically to provide more robust and reproducible kPL measures for future preclinical and clinical studies.


Subject(s)
Carbon Isotopes/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging , Pyruvic Acid/metabolism , Animals , Computer Simulation , Image Processing, Computer-Assisted , Mice, Inbred C57BL , Models, Theoretical
19.
NMR Biomed ; 32(10): e3937, 2019 10.
Article in English | MEDLINE | ID: mdl-29870085

ABSTRACT

Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design.


Subject(s)
Carbon Isotopes/metabolism , Magnetic Resonance Imaging , Neoplasms/metabolism , Animals , Glutamine/metabolism , Humans , Imaging, Three-Dimensional , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...