Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 1): 132036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697429

ABSTRACT

Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed Ki values of 30 µM for MAL12 (GPESB16) and 37 µM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Kinetics , Ligands , Swine , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Animals , Catalytic Domain , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Triazoles/chemistry , Triazoles/pharmacology , Models, Molecular
2.
J Cell Biochem ; 124(11): 1734-1748, 2023 11.
Article in English | MEDLINE | ID: mdl-37796142

ABSTRACT

The pathogenic complexity of Alzheimer's disease (AD) demands the development of multitarget-directed agents aiming at improving actual pharmacotherapy. Based on the cholinergic hypothesis and considering the well-established role of butyrylcholinesterase (BuChE) in advanced stages of AD, the chemical structure of the acetylcholinesterase (AChE) inhibitor drug donepezil (1) was rationally modified for the design of new N-benzyl-piperidine derivatives (4a-d) as potential multitarget-direct AChE and BuChE inhibitors. The designed analogues were further studied through the integration of in silico and in vitro methods. ADMET predictions showed that 4a-d are anticipated to be orally bioavailable, able to cross the blood-brain barrier and be retained in the brain, and to have low toxicity. Computational docking and molecular dynamics indicated the formation of favorable complexes between 4a-d and both cholinesterases. Derivative 4a presented the lowest binding free energy estimation due to interaction with key residues from both target enzymes (-36.69 ± 4.47 and -32.23 ± 3.99 kcal/mol with AChE and BuChE, respectively). The in vitro enzymatic assay demonstrated that 4a was the most potent inhibitor of AChE (IC50 2.08 ± 0.16 µM) and BuChE (IC50 7.41 ± 0.44 µM), corroborating the in silico results and highlighting 4a as a novel multitarget-directed AChE/BuChE inhibitor.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Humans , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/therapeutic use , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Structure-Activity Relationship , Molecular Docking Simulation
3.
Molecules ; 28(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630195

ABSTRACT

Schistosomiasis is a tropical disease transmitted in an aqueous environment by cercariae from the Schistosoma genus. This disease affects 200 million people living in risk areas around the world. The control of schistosomiasis is realized by chemotherapy, wastewater sanitation, health education, and mollusk control using molluscicidal agents. This work evaluates the effects of a nanoemulsion containing essential oil from Myrciaria floribunda leaves as a molluscicidal and cercaricidal agent against Biomphalaria glabrata mollusks and Schistosoma mansoni cercariae. The Myrciaria floribunda essential oil from leaves showed nerolidol, ß-selinene, 1,8 cineol, and zonarene as major constituents. The formulation study suggested the F3 formulation as the most promising nanoemulsion with polysorbate 20 and sorbitan monooleate 80 (4:1) with 5% (w/w) essential oil as it showed a smaller droplet size of approximately 100 nm with a PDI lower than 0.3 and prominent bluish reflection. Furthermore, this nanoemulsion showed stability after 200 days under refrigeration. The Myrciaria floribunda nanoemulsion showed LC50 values of 48.11 µg/mL, 29.66 µg/mL, and 47.02 µg/mL in Biomphalaria glabrata embryos, juveniles, and adult mollusks, respectively, after 48 h and 83.88 µg/mL for Schistosoma mansoni cercariae after 2 h. In addition, a survival of 80% was observed in Danio rerio, and the in silico toxicity assay showed lower overall human toxicity potential to the major compounds in the essential oil compared to the reference molluscicide niclosamide. These results suggest that the nanoemulsion of Myrciaria floribunda leaves may be a promising alternative for schistosomiasis control.


Subject(s)
Molluscacides , Myrtaceae , Oils, Volatile , Adult , Humans , Oils, Volatile/pharmacology , Molluscacides/pharmacology , Eucalyptol , Niclosamide , Food
4.
Biomed Pharmacother ; 162: 114608, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37003033

ABSTRACT

Purinergic receptors are transmembrane proteins responsive to extracellular nucleotides and are expressed by several cell types throughout the human body. Among all identified subtypes, the P2×7 receptor has emerged as a relevant target for the treatment of inflammatory disease. Several clinical trials have been conducted to evaluate the effectiveness of P2×7R antagonists. However, to date, no selective antagonist has reached clinical use. In this work, we report the pharmacological evaluation of eleven N, S-acetal juglone derivatives as P2×7R inhibitors. Using in vitro assays and in vivo experimental models, we identified one derivative with promising inhibitory activity and low toxicity. Our in silico studies indicate that the 1,4-naphthoquinone moiety might be a valuable molecular scaffold for the development of novel P2×7R antagonists, as suggested by our previous studies.


Subject(s)
Acetals , Naphthoquinones , Humans , Receptors, Purinergic P2X7 , Adenosine Triphosphate/metabolism
5.
Front Pharmacol ; 14: 1078936, 2023.
Article in English | MEDLINE | ID: mdl-36909200

ABSTRACT

Schistosomiasis is caused by the parasite Schistosoma mansoni, which uses mollusks of the Biomphalaria genus as intermediate hosts. In 2020, approximately 241 million people worldwide underwent treatment for schistosomiasis. For this reason, the World Health Organization encourages research on alternative molluskicides based on plant species. The objective of this work was to investigate Neomitranthes obscura essential oil from leaf chemical composition and its essential oil nanoemulsion activity on intermediate hosts of schistosomiasis Biomphalaria glabrata control. The major chemical components of the Neomitranthes obscura essential oil were zonarene, seline-3,7(11)-diene, ß-selinene, and α-selinene. The nanoemulsion tested using 24-well plate methodology showed lethality and juvenile mollusks with LC90 values of 53.9 and 25.0 ppm after 48 h, respectively, and on their spawning with an LC90 of 66.2 ppm after 48 h. Additionally, the nanoemulsion exhibited an LC90 value against the infective form of the parasite Schistosoma mansoni of 11.5 ppm after 4 h. This pharmaceutical formulation acted inhibiting the acetylcholinesterase activity and was not toxic for Mellanoides sp. This result suggests the use of this nanoformulation as a promising alternative in the control of Biomphalaria glabrata and the transmission of schistosomiasis.

6.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677652

ABSTRACT

ATP acts in the extracellular environment as an important signal, activating a family of receptors called purinergic receptors. In recent years, interest in the potential therapeutics of purinergic components, including agonists and antagonists of receptors, has increased. Currently, many observations have indicated that ATP acts as an important mediator of inflammatory responses and, when found in high concentrations in the extracellular space, is related to the activation of the P2X7 purinergic receptor. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Sulfonamide derivatives have been reported to be potent inhibitors of P2X receptors. In this study, ten naphthoquinone sulfonamide derivatives and five naphthoquinone sulfonate ester derivatives were tested for their inhibitory activity on the P2X7 receptor expressed in peritoneal macrophages. Some compounds showed promising results, displaying IC50 values lower than that of A740003. Molecular docking and dynamic studies also indicated that the active compounds bind to an allosteric site on P2X7R. The binding free energy indicates that sulfonamides have an affinity for the P2X7 receptor similar to A740003. Therefore, the compounds studied herein present potential P2X7R inhibition.


Subject(s)
Naphthoquinones , Purinergic P2X Receptor Antagonists , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/chemistry , Sulfonamides/pharmacology , Molecular Docking Simulation , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Receptors, Purinergic P2X7 , Adenosine Triphosphate/metabolism
7.
Inflamm Res ; 72(2): 237-250, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36463339

ABSTRACT

OBJECTIVE: The present study aimed to investigate five triazole compounds as P2X7R inhibitors and evaluate their ability to reduce acute inflammation in vivo. MATERIAL: The synthetic compounds were labeled 5e, 8h, 9i, 11, and 12. TREATMENT: We administered 500 ng/kg triazole analogs in vivo, (1-10 µM) in vitro, and 1000 mg/kg for toxicological assays. METHODS: For this, we used in vitro experiments, such as platelet aggregation, in vivo experiments of paw edema and peritonitis in mice, and in silico experiments. RESULTS: The tested substances 5e, 8h, 9i, 11, and 12 produced a significant reduction in paw edema. Molecules 5e, 8h, 9i, 11, and 12 inhibited carrageenan-induced peritonitis. Substances 5e, 8h, 9i, 11, and 12 showed an anticoagulant effect, and 5e at a concentration of 10 µM acted as a procoagulant. All derivatives, except for 11, had pharmacokinetic, physicochemical, and toxicological properties suitable for substances that are candidates for new drugs. In addition, the ADMET risk assessment shows that derivatives 8h, 11, 5e, and 9i have high pharmacological potential. Finally, docking tests indicated that the derivatives have binding energies comparable to the reference antagonist with a competitive inhibition profile. CONCLUSIONS: Together, the results indicate that the molecules tested as antagonist drugs of P2X7R had anti-inflammatory action against the acute inflammatory response.


Subject(s)
Hemostatics , Peritonitis , Mice , Animals , Hemostatics/adverse effects , Triazoles/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Edema/chemically induced , Edema/drug therapy , Carrageenan/adverse effects , Molecular Docking Simulation
8.
Front Plant Sci ; 13: 853002, 2022.
Article in English | MEDLINE | ID: mdl-35693155

ABSTRACT

Schistosomiasis is caused by the intestinal parasite Schistosoma mansoni. Individuals are affected by schistosomiasis when they are exposed to aquatic environments contaminated with Schistosoma cercariae that emerged from the infected intermediate host mollusk of the genus Biomphalaria. The WHO recommends using molluscicidal products to reduce the snail population and disease transmission. The WHO encourages the search for alternative substances in schistosomiasis control. Natural products are seen as a promising alternative because they are abundant in countries where schistosomiasis is endemic and have many different substances in their extracts, impairing cases of resistance. Therefore, the nanoemulsion effect of a butanol-soluble fraction of Sideroxylon obtusifolium leaves was evaluated against three study points in the biological cycle of the disease, that is, adults and young Biomphalaria glabrata, spawning by the host mollusk, and infectious larvae of the parasite. Extract-SOB (butanol fraction) and nano-SOB (nanoemulsion) demonstrated promising activity in adult B. glabrata population control with an LC50 of 125.4 mg/L, an LC90 of 178.1 mg/L, an LC50 of 75.2 mg/L, and an LC90 of 97 mg/L. Nano-SOB presented greater potency against young B. glabrata, with an LC90 of 72.1 mg/L and an LC50 of 58.3 mg/L. Still, relevant activity against S. mansoni cercariae was eliminated in 4 h (LC90: 34.6 mg/L). Nano-SOB reduced viable spawning by approximately 30% at 178.1 and 97 mg/L. Referring to most substances in this extract, quercetin-3-rhamnosyl-(1-6)-galactoside and hyperoside may cause low environmental toxicity and human toxicity according to in silico analysis. Thus, nano-SOB is a promising agent to combat B. glabrata population growth and schistosomiasis transmission.

9.
Pharmaceutics ; 14(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35631497

ABSTRACT

P2X7R is a purinergic receptor with broad expression throughout the body, especially in immune system cells. P2X7R activation causes inflammatory mediators to release, including interleukin-1ß (IL-1ß), the processing and release of which are critically dependent on this ion channel activation. P2X7R's therapeutic potential augments the discovery of new antagonistic compounds. Thus, we investigated whether the Eugenia sulcata essential oil could block P2X7R activity. The essential oil (ESO) dose-dependently inhibited ATP-promoted PI uptake and IL-1ß release with an IC50 of 113.3 ± 3.7 ng/mL and 274 ± 91 ng/mL, respectively, and the essential oil nanoemulsion (ESON) improved the ESO inhibitory effect with an IC50 of 81.4 ± 7.2 ng/mL and 62 ± 2 ng/mL, respectively. ESO and ESON reversed the carrageenan-activated peritonitis in mice, and ESON exhibited an efficacy higher than ESO. The majority substance from essential oil, ß-caryophyllene, impaired the ATP-evoked PI uptake and IL-1ß release with an IC50 value of 26 ± 0.007 ng/mL and 97 ± 0.012 ng/mL, respectively. Additionally, ß-caryophyllene reduced carrageenan-induced peritonitis, and the molecular modeling and computational simulation predicted the intermolecular interactions in the P2X7R situs. In silico, results indicated ß-caryophyllene as a potent allosteric P2X7R antagonist, although this substance may present toxic effects for humans. These data confirm the nanoemulsion of essential oil from E. sulcata as a promisor biotechnology strategy for impaired P2X7R functions and the inflammatory response.

10.
Curr Top Med Chem ; 22(12): 973-991, 2022.
Article in English | MEDLINE | ID: mdl-35524665

ABSTRACT

BACKGROUND: Microbial resistance has become a worldwide public health problem and may lead to morbidity and mortality in affected patients. OBJECTIVES: Therefore, this work aimed to evaluate the antibacterial activity of quinone-4- oxoquinoline derivatives. METHODS: These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and in silico assays. RESULTS: The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities and, in some cases, were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion, and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane, and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION: The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.


Subject(s)
Gram-Negative Bacteria , Quinolones , 4-Quinolones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Humans , Microbial Sensitivity Tests , Quinolones/pharmacology , Quinones/pharmacology , Structure-Activity Relationship
11.
J Mol Graph Model ; 113: 108145, 2022 06.
Article in English | MEDLINE | ID: mdl-35176504

ABSTRACT

Cancer remains among the world's top devastating diseases, with millions of lives been affected each year. Conventional anticancer therapies are often far from ideal due to non-selective biodistribution. Therefore, the carbon nanotube (CNT) has been developed as a drug carrier for targeting specific cancer cells. In this work, we applied computer modeling approaches to investigate the interactions of single-wall carbon nanotube (SWCNT) with three different anticancer drugs: doxorubicin (DOX), Bendamustine (BEN), and Carmustine (CAR). Here we find physicochemical characteristics from the ligands that can contribute to a higher affinity towards the CNT, such as the presence of halogen substituents and the positively charged cation. On the other hand, the presence of anions groups, such as carboxylate, can decrease the interaction of the ligands and CNT. The binding free energy results indicate the SWCNT(15,15) with a diameter of 20.3 Å as the most favorable for encapsulating drugs ranging from 12 to 39 heavy atoms. The basic knowledge obtained from this study is expected to contribute to the molecular understanding of drug-loaded SWCNT for the development of a more efficiently anticancer drug carrier.


Subject(s)
Nanotubes, Carbon , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Molecular Dynamics Simulation , Nanotubes, Carbon/chemistry , Tissue Distribution
12.
J Bioenerg Biomembr ; 52(3): 199-213, 2020 06.
Article in English | MEDLINE | ID: mdl-32418003

ABSTRACT

A series of 11 new N,S-acetal juglone derivatives were synthesized and evaluated against T. cruzi epimastigote forms. These compounds were obtained in good to moderate yields using a microwave irradiation protocol. Among all compounds, two N,S-acetal analogs, showed significant trypanocidal activity. Notably, one compound 11g exhibited selectivity index 10-fold higher than the reference drug benznidazole for epimastigote. The compound 11h was more effective for amastigote forms. Both prototypes exhibited S.I. higher than the benznidazole description. Thus, both compounds proving to be useful candidate molecules to further studies in infected animals.


Subject(s)
Acetals/metabolism , Chagas Disease/drug therapy , Trypanosoma cruzi/drug effects
13.
J Bioenerg Biomembr ; 51(4): 277-290, 2019 08.
Article in English | MEDLINE | ID: mdl-31256283

ABSTRACT

The P2X7 receptor (P2X7R) is an ion channel which is activated by interactions with the extracellular ATP molecules. The molecular complex P2X7R/ATP induces conformational changes in the protein subunits, opening a pore in the ion channel macromolecular structure. Currently, the P2X7R has been studied as a potential therapeutic target of anti-inflammatory drugs. Based on this, a series of eight boronic acids (NO) analogs were evaluated on the biologic effect of this pharmacophoric group on the human and murine P2X7R. The boronic acids derivatives NO-01 and NO-12 inhibited in vitro human and murine P2X7R function. These analogs compounds showed effect better than compound BBG and similar to inhibitor A740003 for inhibiting dye uptake, in vitro IL-1ß release and ATP-induced paw edema in vivo. In both, in vitro and in vivo assays the compound NO-01 showed to be the hit compound in the present series of the arylboronic acids analogs. The molecular docking suggests that the NO derivatives bind into the upper body domain of the P2X7 pore and that the main intermolecular interaction with the two most active NO derivatives occur with the residues Phe 95, 103 and 293 by hydrophobic interactions and with Leu97, Gln98 and Ser101 by hydrogen bonds.. These results indicate that the boronic acid derivative NO-01 shows the lead compound characteristics to be used as a scaffold structure to the development of new P2X7R inhibitors with anti-inflammatory action.


Subject(s)
Anti-Inflammatory Agents , Boronic Acids , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7/metabolism , Acetamides/chemistry , Acetamides/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Boronic Acids/chemistry , Boronic Acids/pharmacology , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Receptors, Purinergic P2X7/genetics
14.
J Biomol Struct Dyn ; 36(16): 4352-4365, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29241420

ABSTRACT

Infections by Candida albicans in immune compromised patients cause significant morbidity and mortality. In the search for potential molecular targets for drug development, the family of agglutinin-like proteins (Als) in C. albicans have been identified due to numerous attributes associated with high virulence, most prominently due to their role in adherence. Here, molecular models of individual members of the Als family illustrated common and unique structure features. Additionally, dynamic simulations were performed to display regions of high mobility. The results showed variations between Als members in the fluctuation of the A1B1 protein loop, which is located at the entrance to the peptide binding cavity, suggesting that this feature may be a factor contributing to observed differences in affinities to ligands and adhesion properties. Molecular docking results further suggested that ligand affinity could be influenced by movements in the A1B1 loop. In addition, a new site was identified in Als in an area adjacent to the peptide binding cavity that could serve as a new binding site for the design of future anti-adhesion ligands that provide increased specificity inhibiting Als proteins from C. albicans.


Subject(s)
Agglutinins/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candidiasis/prevention & control , Fungal Proteins/chemistry , Agglutinins/metabolism , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Binding Sites , Candida albicans/metabolism , Candida albicans/pathogenicity , Candidiasis/microbiology , Fungal Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Domains , Virulence
15.
Eur J Med Chem ; 139: 698-717, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28858765

ABSTRACT

Fifty-one 1,2,3-triazole derivatives were synthesized and evaluated with respect to P2X7 receptor (P2X7R) activity and its associated pore. These triazoles were screened in vitro for dye uptake assay and its cytotoxicity against mammalian cell types. Seven 1,2,3-triazole derivatives (5e, 6e, 8h, 9d, 9i, 11, and 12) potently blocked P2X7 receptor pore formation in vitro (J774.G8 cells and peritoneal macrophages). All blockers displayed IC50 value inferior to 500 nM, and they have low toxicity in either cell types. These seven selected triazoles inhibited P2X7R mediated interleukin-1 (IL-1ß) release. In particular, compound 9d was the most potent P2X7R blocker. Additionally, in mouse acute models of inflammatory responses induced by ATP or carrageenan administration in the paw, compound 9d promoted a potent blocking response. Similarly, 9d also reduced mouse LPS-induced pleurisy cellularity. In silico predictions indicate this molecule appropriate to develop an anti-inflammatory agent when it was compared to commercial analogs. Electrophysiological studies suggest a competitive mechanism of action of 9d to block P2X7 receptor. Molecular docking was performed on the ATP binding site in order to observe the preferential interaction pose, indicating that binding mode of the 9d is by interacting its 1,2,3-triazole and ether moiety with positively charged residues and with its chlorobenzene moiety orientated toward the apolar end of the ATP binding site which are mainly composed by the Ile170, Trp167 and Leu309 residues from α subunit. These results highlight 9d derivative as a drug candidate with potential therapeutic application based on P2X7 receptor blockade.


Subject(s)
Inflammation/drug therapy , Pleurisy/drug therapy , Receptors, Purinergic P2X7/metabolism , Triazoles/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Inflammation/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
16.
Article in English | MEDLINE | ID: mdl-26416769

ABSTRACT

BACKGROUND: Biotechnology, which promoted revolutions in many fields, generates great expectations for the future, mainly in the pharmaceutical sector for the treatment of several diseases. Cancer is a leading cause of death worldwide and due to its complexity and singularity, there are a number of challenges that limit the development of new drugs for antitumor therapies, making the research for cancer treatment one of the most exploited in the medical field. OBJECTIVE: The main objective of this article is to identify trends of biotechnological advances that may have application in improving cancer therapies. METHOD: Information from patent applications of biotechnological drugs in the last five years was retrieved using Thomson Reuters Integrity database. RESULTS: Cancer is the leading therapeutic condition found in patent documents. The subject matter most cited in patent applications includes monoclonal antibodies, adoptive cell therapy, RNA interference and new vaccine peptides. CONCLUSION: The analysis of the documents has provided an overview of new biological alternatives for use in cancer treatment, showing potential avenues for years to come.


Subject(s)
Antineoplastic Agents/therapeutic use , Biotechnology/trends , Neoplasms/drug therapy , Patents as Topic , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Biotechnology/methods , Forecasting , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Neoplasms/metabolism , RNA Interference/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...