Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 105: 264-273, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27623412

ABSTRACT

To support decision makers in planning effective combined sewer overflow (CSO) management strategies an integrated modelling and impact assessment approach has been developed and applied for a large urban area in Berlin, Germany. It consists of an urban drainage model, a river water quality model and a tool for the quantification of adverse dissolved oxygen (DO) conditions in the river, one of the main stressors for urban lowland rivers. The coupled model was calibrated successfully with average Nash-Sutcliffe-efficiencies for DO in the river of 0.61 and 0.70 for two validation years. Moreover, the whole range of observed DO concentrations after CSO down to 0 mg L-1 is simulated by the model. A local sensitivity analysis revealed that in the absence of CSO dissolved oxygen principally depends on phytoplankton dynamics. Regarding CSO impacts, it was shown that 97% of the observed DO deficit can be explained by the three processes (i) mixing of river water with CSO spill water poor in DO, (ii) reduced phytoplankton activity due to CSO-induced turbidity and (iii) degradation of organic matter by heterotrophic bacteria. As expected, process (iii) turned out to be the most important one. However depending on the time lag after CSO the other processes can become dominant. Given the different involved processes, we found that different mitigation schemes tested in a scenario analysis can reduce the occurrence of critical DO deficits in the river by 30-70%. Overall, the study demonstrates that integrated sewer-river-models can be set up to represent CSO impacts under complex urban conditions. However, a significant effort in monitoring and modelling is a requisite for achieving reliable results.


Subject(s)
Environmental Monitoring , Rivers/microbiology , Fresh Water , Models, Theoretical , Water Quality
2.
Water Res ; 44(15): 4451-62, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20599243

ABSTRACT

The present study examines the contribution of combined sewer overflows (CSO) to loads and concentrations of trace contaminants in receiving surface water. A simple method to assess the ratio of CSO to wastewater treatment plant (WWTP) effluents was applied to the urban River Spree in Berlin, Germany. The assessment indicated that annual loads are dominated by CSO for substances with removal in WWTP above approximately 95%. Moreover, it showed that substances with high removal in WWTP can lead to concentration peaks in the river during CSO events. The calculated results could be verified based on eight years of monitoring data from the River Spree, collected between 2000 and 2007. Substances that are well removed in WWTP such as NTA (nitrilotriacetic acid) were found to occur in significantly increased concentration during CSO, while the concentration of substances that are poorly removable in WWTP such as EDTA (ethylenediaminetetraacetic acid) decreased in CSO-influenced samples due to dilution effects. The overall results indicate the potential importance of the CSO pathway of well-removable sewage-based trace contaminants to rivers. In particular, high concentrations during CSO events may be relevant for aquatic organisms. Given the results, it is suggested to include well-removable, sewage-based trace contaminants, a substance group often neglected in the past, in future studies on urban rivers in case of combined sewer systems. The presented methodology is suggested for a first assessment, since it is based solely on urban drainage data, which is available in most cities.


Subject(s)
Rivers/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Berlin , Cities , Environmental Monitoring/methods , Geography , Nitrilotriacetic Acid/isolation & purification , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...