Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 850: 158072, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35985589

ABSTRACT

Subsurface phosphorus (P) loss from deep P stocks in floodplain subsoils can contribute to eutrophication of freshwaters. To date, knowledge on the complex biogeochemical interactions of P in floodplain subsoils is too scarce to enable targeted P management to mitigate subsurface P loss from deep P stocks. We propose using graph theory and the Soilscape Network Approach (SNAp) based on correlations between P-relevant elements to study these complex biogeochemical interactions in the soilscape. Complex interactions of several elements in soils are difficult to investigate from a holistic perspective with conventional data analysis. We translated soil element data from topsoils and subsoils of terrestrial sites, proximal and distal floodplain sites into relational data and analyzed network structure, centrality, and modularity. The results indicate that a higher frequency of groundwater level fluctuations in distal subsoils and proximal topsoils could result in 24-44 % less biogeochemical interaction compared to sites with stable conditions. Impeded microbial processes on the frequently disturbed sites may explain this finding. Our analyses suggest biogeochemical differences between floodplain topsoils and subsoils expressed in 24 % lower and 75 % higher network connectivity in distal and proximal subsoils (respectively). We also found 22 % lower network connectivity in distal than proximal floodplain subsoils, suggesting biogeochemical differences between both soil sections. These findings imply that floodplain P management should not take a whole-floodplain approach but a 3D-approach, which differentiates laterally between floodplain zones and vertically between soil sections. In addition, SNAp indicated that Fe(II) oxides are important in P biogeochemistry of floodplain subsoils but are not the key element. Instead, labile P forms are suggested to have different major associations in distal (Alox, Feox) versus proximal deep P stocks (Alox, Mn, Ca). Our study provides new insights into the biogeochemistry of deep P stocks in floodplain subsoils which require targeted validation by other methods.


Subject(s)
Phosphorus , Soil , Eutrophication , Ferrous Compounds , Oxides , Phosphorus/analysis , Soil/chemistry
2.
Oecologia ; 198(1): 229-242, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34984520

ABSTRACT

Recent studies from the Hawaiian Islands showed that pedogenic thresholds demarcate domains in which rock-derived nutrient dynamics remain similar across wide variations in rainfall. These thresholds appear related to certain aspects of N cycling, but the degree to which they correspond to patterns of biological N fixation (BNF)-the dominant input of N into less-managed ecosystems-remains unclear. We measured aboveground plant biomass, foliar nutrient concentrations, and foliar δ15N along a climate gradient on ~ 150,000-year-old basaltic substrate to characterize foliar N sources and spatially relate them to soil nutrients. Patterns in legume δ15N correspond to known pedogenic thresholds along the rainfall gradient, with low δ15N values (~ 0 to - 2‰) occurring in the dry, biologically inactive domain and the wet, highly weathered domain. Elevated δ15N in the middle, fertile domain suggests a greater reliance of legumes on soil N where it has accumulated over time. Non-legume face N deficiencies throughout most of the gradient while legumes maintain low C:N ratios via symbiotic BNF. However, legume abundance declines outside the fertile domain, limiting ecosystem N inputs. Breakpoints in legume δ15N data suggest that P (and potentially other nutrients) limits BNF and, by extension, legume abundance in wet region. Nutrients may also constrain legume abundance in the dry domain, but pedogenic effects could not be isolated from climatic constraints at the dry sites. We conclude that pedogenic thresholds defined by climate can be informative of foliar δ15N patterns in cases where legumes are not directly constrained by climate, land use, or other external factors.


Subject(s)
Ecosystem , Fabaceae , Hawaii , Nitrogen , Plant Leaves , Soil
3.
Front Microbiol ; 13: 1024630, 2022.
Article in English | MEDLINE | ID: mdl-36590403

ABSTRACT

Sediments cover a majority of Earth's surface and are essential for global biogeochemical cycles. The effects of sediment physiochemical features on microbial community structures have attracted attention in recent years. However, the question of whether the interstitial space has significant effects on microbial community structures in submerged sediments remains unclear. In this study, based on identified OTUs (operational taxonomic units), correlation analysis, RDA analysis, and Permanova analysis were applied into investigating the effects of interstitial space volume, interstitial gas space, volumetric water content, sediment particle features (average size and evenness), and sediment depth on microbial community structures in different sedimentation areas of Chaohu Lake (Anhui Province, China). Our results indicated that sediment depth was the closest one to the main environmental gradient. The destruction effects of gas space on sediment structures can physically affect the similarity of the whole microbial community in all layers in river dominated sedimentation area (where methane emits actively). However, including gas space, none of the five interstitial space parameters were significant with accounting for the microbial community structures in a sediment layer. Thus, except for the happening of active physical destruction on sediment structures (for example, methane ebullition), sediment interstitial space parameters were ineffective for affecting microbial community structures in all sedimentation areas.

4.
Sci Total Environ ; 784: 147131, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33895510

ABSTRACT

Subsurface phosphorus (P) translocation along slopes may contribute to P enrichment in the subsoils of riparian buffer zones. Such "deep P stocks" might contribute to P concentrations and eutrophication of freshwaters. Better understanding of subsurface P translocation through the soilscape is required to understand the build-up of deep P stocks and to develop targeted mitigation strategies against it. However, such soilscape P dynamics are difficult to tackle due to logistical limitations of common field sampling strategies. Here, we introduce the Soilscape Network Approach (SNAp) as a solution to this problem: It enables to study soilscape P dynamics from a new analytical perspective but on the basis of common field sampling strategies. For this purpose, we are using the graph visualization platform Gephi with field data from a study on subsurface P translocation in Germany. The application of SNAp corroborated prior results regarding deep P stocks in riparian buffer zones, and it enabled the identification of major P sink and source sites as well as dominant P translocation pathways. Our SNAp analysis suggests that subsurface P translocation from topslopes and middle slopes is relevant for the build-up of deep P stocks in the studied toeslope subsoils, especially with shallow basalt or agricultural fertilizer inputs on the top- and middle slopes. Besides, the data imply that lateral P translocation along the studied slopes is small on short slopes, increases until a maximum is achieved, then decreases again when slopes are too long. The SNAp analysis offers new findings which gave valuable insights for the mitigation of subsurface P translocation along slopes.

5.
New Phytol ; 230(5): 1883-1895, 2021 06.
Article in English | MEDLINE | ID: mdl-33638193

ABSTRACT

Understanding P uptake in soil-plant systems requires suitable P tracers. The stable oxygen isotope ratio in phosphate (expressed as δ18 OP ) is an alternative to radioactive labelling, but the degree to which plants preserve the δ18 OP value of the P source is unclear. We hypothesised that the source signal will be preserved in roots rather than shoots. In soil and hydroponic experiments with spring wheat (Triticum aestivum), we replaced irrigation water by 18 O-labelled water for up to 10 d. We extracted plant inorganic phosphates with trichloroacetic acid (TCA), assessed temporal dynamics of δ18 OTCA-P values after changing to 18 O-labelled water and combined the results with a mathematical model. Within 1 wk, full equilibration of δ18 OTCA-P values with the isotope value of the water in the growth medium occurred in shoots but not in roots. Model results further indicated that root δ18 OTCA-P values were affected by back transport of phosphate from shoots to roots, with a greater contribution of source P at higher temperatures when back transport was reduced. Root δ18 OTCA-P partially preserved the source signal, providing an indicator of P uptake sources. This now needs to be tested extensively for different species, soil and climate conditions to enable application in future ecosystem studies.


Subject(s)
Phosphorus , Triticum , Ecosystem , Models, Theoretical , Oxygen Isotopes/analysis , Plant Roots/chemistry , Soil
6.
ISME J ; 13(2): 290-300, 2019 02.
Article in English | MEDLINE | ID: mdl-30214028

ABSTRACT

Differentiating the contributions of photosynthesis and respiration to the global carbon cycle is critical for improving predictive climate models. Carbonic anhydrase (CA) activity in leaves is responsible for the largest biosphere-atmosphere trace gas fluxes of carbonyl sulfide (COS) and the oxygen-18 isotopologue of carbon dioxide (CO18O) that both reflect gross photosynthetic rates. However, CA activity also occurs in soils and will be a source of uncertainty in the use of COS and CO18O as carbon cycle tracers until process-based constraints are improved. In this study, we measured COS and CO18O exchange rates and estimated the corresponding CA activity in soils from a range of biomes and land use types. Soil CA activity was not uniform for COS and CO2, and patterns of divergence were related to microbial community composition and CA gene expression patterns. In some cases, the same microbial taxa and CA classes catalyzed both COS and CO2 reactions in soil, but in other cases the specificity towards the two substrates differed markedly. CA activity for COS was related to fungal taxa and ß-D-CA expression, whereas CA activity for CO2 was related to algal and bacterial taxa and α-CA expression. This study integrates gas exchange measurements, enzyme activity models, and characterization of soil taxonomic and genetic diversity to build connections between CA activity and the soil microbiome. Importantly, our results identify kinetic parameters to represent soil CA activity during application of COS and CO18O as carbon cycle tracers.


Subject(s)
Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Microbiota , Soil Microbiology , Sulfur Oxides/metabolism , Bacteria/enzymology , Carbon Dioxide/analysis , Fungi/enzymology , Oxygen Isotopes , Photosynthesis , Soil/chemistry , Sulfur Oxides/analysis
7.
Nat Commun ; 9(1): 3226, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104647

ABSTRACT

Current understanding of phosphorus (P) cycling in soils can be enhanced by integrating previously discrete findings concerning P speciation, exchange kinetics, and the underlying biological and geochemical processes. Here, we combine sequential extraction with P K-edge X-ray absorption spectroscopy and isotopic methods (33P and 18O in phosphate) to characterize P cycling on a climatic gradient in Hawaii. We link P pools to P species and estimate the turnover times for commonly considered P pools. Dissolved P turned over in seconds, resin-extractable P in minutes, NaOH-extractable inorganic P in weeks to months, and HCl-extractable P in years to millennia. Furthermore, we show that in arid-zone soils, some primary mineral P remains even after 150 ky of soil development, whereas in humid-zone soils of the same age, all P in all pools has been biologically cycled. The integrative information we provide makes possible a more dynamic, process-oriented conceptual model of P cycling in soils.

8.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Article in English | MEDLINE | ID: mdl-28402397

ABSTRACT

Changes in species richness along climatological gradients have been instrumental in developing theories about the general drivers of biodiversity. Previous studies on microbial communities along climate gradients on mountainsides have revealed positive, negative and neutral richness trends. We examined changes in richness and composition of Fungi, Bacteria and Archaea in soil along a 50-1000 m elevation, 280-3280 mm/yr precipitation gradient in Hawai'i. Soil properties and their drivers are exceptionally well understood along this gradient. All three microbial groups responded strongly to the gradient, with community ordinations being similar along axes of environmental conditions (pH, rainfall) and resource availability (nitrogen, phosphorus). However, the form of the richness-climate relationship varied between Fungi (positive linear), Bacteria (unimodal) and Archaea (negative linear). These differences were related to resource-ecology and limiting conditions for each group, with fungal richness increasing most strongly with soil carbon, ammonia-oxidizing Archaea increasing with nitrogen mineralization rate, and Bacteria increasing with both carbon and pH. Reponses to the gradient became increasingly variable at finer taxonomic scales and within any taxonomic group most individual OTUs occurred in narrow climate-elevation ranges. These results show that microbial responses to climate gradients are heterogeneous due to complexity of underlying environmental changes and the diverse ecologies of microbial taxa.


Subject(s)
Archaea/classification , Bacteria/classification , Fungi/classification , Microbial Consortia/physiology , Soil/chemistry , Ammonia/analysis , Archaea/genetics , Bacteria/genetics , Biodiversity , Carbon/analysis , Fungi/genetics , High-Throughput Nucleotide Sequencing , Nitrogen/analysis , Phosphorus/analysis , Soil Microbiology , Tropical Climate
9.
Ecology ; 98(4): 1117-1129, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28130777

ABSTRACT

The supply of nitrogen (N) constrains primary productivity in many ecosystems, raising the question "what controls the availability and cycling of N"? As a step toward answering this question, we evaluated N cycling processes and aspects of their regulation on a climate gradient on Kohala Volcano, Hawaii, USA. The gradient extends from sites receiving <300 mm/yr of rain to those receiving >3,000 mm/yr, and the pedology and dynamics of rock-derived nutrients in soils on the gradient are well understood. In particular, there is a soil process domain at intermediate rainfall within which ongoing weathering and biological uplift have enriched total and available pools of rock-derived nutrients substantially; sites at higher rainfall than this domain are acid and infertile as a consequence of depletion of rock-derived nutrients, while sites at lower rainfall are unproductive and subject to wind erosion. We found elevated rates of potential net N mineralization in the domain where rock-derived nutrients are enriched. Higher-rainfall sites have low rates of potential net N mineralization and high rates of microbial N immobilization, despite relatively high rates of gross N mineralization. Lower-rainfall sites have moderately low potential net N mineralization, relatively low rates of gross N mineralization, and rates of microbial N immobilization sufficient to sequester almost all the mineral N produced. Bulk soil δ15 N also varied along the gradient, from +4‰ at high rainfall sites to +14‰ at low rainfall sites, indicating differences in the sources and dynamics of soil N. Our analysis shows that there is a strong association between N cycling and soil process domains that are defined using soil characteristics independent of N along this gradient, and that short-term controls of N cycling can be understood in terms of the supply of and demand for N.


Subject(s)
Climate , Nitrogen Cycle , Hawaii , Nitrogen , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...