Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 6: e1989, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26583329

ABSTRACT

Platelets store and release CXCL12 (SDF-1), which governs differentiation of hematopoietic progenitors into either endothelial or macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regulates monocyte/macrophage functions. This study deciphers the relative contribution of CXCR4-CXCR7 in mediating the effects of platelet-derived CXCL12 on monocyte function, survival, and differentiation. CXCL12 and macrophage migration inhibitory factor (MIF) that ligate CXCR4-CXCR7 induced a dynamic bidirectional trafficking of the receptors, causing CXCR4 internalization and CXCR7 externalization during chemotaxis, thereby influencing relative receptor availability, unlike MCP-1. In vivo we found enhanced accumulation of platelets and platelet-macrophage co-aggregates in peritoneal fluid following induction of peritonitis in mice. The relative surface expression of CXCL12, CXCR4, and CXCR7 among infiltrated monocytes was also enhanced as compared with peripheral blood. Platelet-derived CXCL12 from collagen-adherent platelets and recombinant CXCL12 induced monocyte chemotaxis specifically through CXCR4 engagement. Adhesion of monocytes to immobilized CXCL12 and CXCL12-enriched activated platelet surface under static and dynamic arterial flow conditions were mediated primarily through CXCR7 and were counter-regulated by neutralizing platelet-derived CXCL12. Monocytes and culture-derived-M1-M2 macrophages phagocytosed platelets, with the phagocytic potential of culture-derived-M1 macrophages higher than M2 involving CXCR4-CXCR7 participation. CXCR7 was the primary receptor in promoting monocyte survival as exerted by platelet-derived CXCL12 against BH3-mimetic induced apoptosis (phosphatidylserine exposure, caspase-3 activation, loss of mitochondrial transmembrane potential). In co-culture experiments with platelets, monocytes predominantly differentiated into CD163(+) macrophages, which was attenuated upon CXCL12 neutralization and CXCR4/CXCR7 blocking antibodies. Moreover, OxLDL uptake by platelets induced platelet apoptosis, like other platelet agonists TRAP and collagen-related peptide (CRP). CXCL12 facilitated phagocytosis of apoptotic platelets by monocytes and M1-M2 macrophages, also promoted their differentiation into foam cells via CXCR4 and CXCR7. Thus, platelet-derived CXCL12 could regulate monocyte-macrophage functions through differential engagement of CXCR4 and CXCR7, indicating an important role in inflammation at site of platelet accumulation.


Subject(s)
Blood Platelets/immunology , Foam Cells/immunology , Macrophages/immunology , Receptors, CXCR/immunology , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Cats , Cell Differentiation/physiology , Cell Survival/physiology , Foam Cells/cytology , Foam Cells/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Mice , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Receptors, CXCR/blood
2.
Herz ; 40 Suppl 3: 269-76, 2015 May.
Article in English | MEDLINE | ID: mdl-24305990

ABSTRACT

BACKGROUND: Upon coincubation with platelet aggregates, CD34(+) progenitor cells have the potential to differentiate into foam cells. There is evidence that progenitor cells from diabetic and nondiabetic patients have different properties, which may affect the patients' prognosis. In this study we investigated an in vitro model of foam cell formation based on patient-derived CD34(+) progenitor cells. We analyzed the growth characteristics as well as the M-CSF-release and matrix metalloproteinase (MMP) synthesis from CD34(+) progenitor cell-derived foam cells originating from diabetic and nondiabetic patients. METHODS AND RESULTS: Bone marrow samples were obtained from 38 patients who were elected for thoracic surgery. CD34(+) progenitor cells from diabetic and nondiabetic patients were isolated and incubated with platelets from healthy volunteers. Foam cell formation was confirmed by immunostaining (CD68) and quantified by light microscopy. Whereas the absolute number of foam cells was not affected, the negative slope in the growth curve was seen significantly later in the diabetic group. In supernatants derived from"diabetic" CD34(+) progenitor cells, MMP-9 was significantly enhanced, whereas MMP-2 activity or M-CSF-release was not affected significantly. CONCLUSION: In a coculture model of CD34(+) progenitor cells with platelets, we show for the first time that"diabetic" CD34(+) progenitor cells exhibit functional differences in their differentiation to foam cells concerning growth characteristics and release of MMP-9.


Subject(s)
Diabetes Mellitus/enzymology , Diabetes Mellitus/pathology , Foam Cells/enzymology , Foam Cells/pathology , Matrix Metalloproteinase 9/metabolism , Mesenchymal Stem Cells/pathology , Aged , Antigens, CD34/metabolism , Blood Platelets/enzymology , Blood Platelets/pathology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Enzyme Activation , Female , Humans , Male , Mesenchymal Stem Cells/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...