Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(8): 083105, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27587098

ABSTRACT

We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

2.
J Phys Chem A ; 120(39): 7641-7649, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27606714

ABSTRACT

The desorption dynamics of rubidium dimers (Rb2) off the surface of helium nanodroplets induced by laser excitation is studied by employing both nanosecond and femtosecond ion imaging spectroscopy. Similarly to alkali metal atoms, we find that the Rb2 desorption process resembles the dissociation of a diatomic molecule. However, both angular and energy distributions of detected Rb2+ ions appear to be most crucially determined by the Rb2 intramolecular degrees of freedom rather than by those of the Rb2HeN complex. The pump-probe dynamics of Rb2+ is found to be slower than that of Rb+, pointing at a weaker effective guest-host repulsion for excited molecules than for single atoms.

3.
Phys Chem Chem Phys ; 18(28): 18896-904, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27353150

ABSTRACT

Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.

4.
Phys Rev Lett ; 116(20): 203001, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27258866

ABSTRACT

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

5.
J Chem Phys ; 143(3): 034302, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26203022

ABSTRACT

The real-time dynamics of photoexcited and photoionized rubidium (Rb) atoms attached to helium (He) nanodroplets is studied by femtosecond pump-probe mass spectrometry. While excited Rb atoms in the perturbed 6p-state (Rb*) desorb off the He droplets, Rb(+) photoions tend to sink into the droplet interior when created near the droplet surface. The transition from Rb(+) solvation to full Rb* desorption is found to occur at a delay time τ ∼ 600 fs for Rb* in the 6pΣ-state and τ ∼ 1200 fs for the 6pΠ-state. Rb(+)He ions are found to be created by directly exciting bound Rb*He exciplex states as well as by populating bound Rb(+)He-states in a photoassociative ionization process.

6.
J Chem Phys ; 142(4): 044303, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25637983

ABSTRACT

The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li(+) and LiI(+) ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant VXA = 650(20) cm(-1). The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

7.
J Phys Chem A ; 118(33): 6604-14, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24911255

ABSTRACT

We present a combined ion imaging and density functional theory study of the dynamics of the desorption process of rubidium and cesium atoms off the surface of helium nanodroplets upon excitation of the perturbed 6s and 7s states, respectively. Both experimental and theoretical results are well represented by the pseudodiatomic model for effective masses of the helium droplet in the desorption reaction of meff/mHe ≈ 10 (Rb) and 13 (Cs). Deviations from this model are found for Rb excited to the 6p state. Photoelectron spectra indicate that the dopant-droplet interaction induces relaxation into low-lying electronic states of the desorbed atoms in the course of the ejection process.

SELECTION OF CITATIONS
SEARCH DETAIL
...