Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 20(1): 134-141, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30403318

ABSTRACT

In this work, we present an experimental setup for the in situ and ex situ study of the optical activity of samples, which can be prepared under ultra-high vacuum (UHV) conditions by second-harmonic generation circular dichroism (SHG-CD) over a broad spectral range. The use of a racemic mixture as a qualified reference for the anisotropy factor is described and, as an example, the chiroptical properties of 1.5 µm thick (multilayers) as well as sub-monolayer thin films of the R- and S-enantiomer of 1,1'-Bi-2-naphthol (BINOL) evaporated onto BK7 substrates were investigated.

2.
Chemphyschem ; 20(1): 62-69, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30444574

ABSTRACT

We have studied the circular dichroism (CD), in the ultraviolet and visible regions, of the transparent, chiral molecule 1,1'-Bi-2-naphtol (BINOL) in 1.5 µm thick films. The initial transparent film shows an additional negative cotton effect in the CD compared to solution. With time under room temperature the film undergoes a structural phase transition. This goes hand in hand with a cotton effect at the low energy absorption band which inverts with opposite propagation direction of light through the film which is revealed as a polarity reversal of ellipticity (PRE). After completion of the phase transition the film exhibits circular differential scattering throughout the visible range which also shows PRE. The structure change was studied with Raman, microscopy under cross polarization conditions and nonlinear second-harmonic generation circular dichroism (SHG-CD). The superposition of the optical activity of individual molecules and isotropy effects makes an interpretation challenging. Yet overcoming this challenge by finding a suitable model structural information can be derived from CD measurements.

3.
Phys Chem Chem Phys ; 20(31): 20347-20351, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-29971311

ABSTRACT

Water-soluble ligand protected optically active silver nanostructures were synthesised in a one-step reduction and capping process mediated by thiol-containing biomolecules. The synthesis was performed successfully with d- and l-cysteine and l-glutathione. The chiroptical properties of the obtained nanostructures were investigated by circular dichroism spectroscopy in the ultraviolet and visible wavelength range. They exhibit a g-value of up to 0.7%, which is about one order of magnitude larger compared to particles prepared by citrate reduction followed by a ligand exchange reaction. The structure and composition of the prepared materials were characterised by transmission electron microscopy, energy-dispersive X-ray and X-ray photoelectron spectroscopy. Although these structures do not have a chiral geometry, they show mirror image g-values when capped with d- and l-cysteine. This indicates that the underlying chirality transfer mechanism is based on an electric field polarisation process.


Subject(s)
Cysteine/chemistry , Glutathione/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Circular Dichroism , Cysteine/metabolism , Electricity , Glutathione/metabolism , Ligands , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission , Stereoisomerism , Water/chemistry
4.
Acc Chem Res ; 49(11): 2632-2639, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27748122

ABSTRACT

Mass-selected Ptn+ ion deposition in ultrahigh vacuum (UHV) was used to prepare a series of size-selected electrodes with Ptn (n ≤ 14) clusters supported on either glassy carbon (GC) or indium tin oxide (ITO). After characterization of the physical properties of the electrodes in UHV, an in situ method was used to study electrocatalytic activity for the oxygen reduction and ethanol oxidation reactions, without significant air exposure. For each reaction studied, there are similarities between the catalytic properties of Ptn-containing electrodes and those of nanoparticulate or bulk Pt electrodes, but there are also important differences that provide mechanistic insights. For all systems, strong cluster size effects were observed. For comparison, select experiments were done under identical conditions but with the Ptn electrodes exposed to air prior to electrochemical studies, resulting in strong modification/suppression of catalytic activity due to adventitious contaminants. For ethanol oxidation at Ptn/ITO, activity varies with size nonmonotonically, by more than an order of magnitude. The sharp size dependence persists during at least 30 to 40 cycles through the Pt redox potential, indicating that processes that would tend to broaden the size distribution are not efficient. All but the least active sizes are substantially more active per mass of Pt, than Pt nanoparticles under the same conditions. The oscillatory dependence of activity on size is anticorrelated with the binding energy of the Pt 4d core level, demonstrating that activity is controlled by the electronic structure of the supported clusters. For oxygen reduction at Ptn/ITO, the branching between water and hydrogen peroxide production is strongly dependent on cluster size, with small clusters selectively producing peroxide with high activity. The selectivity appears to be related to the size of the active site, with no obvious correlation to Pt electronic properties. The most unusual effect seen was for Ptn/GC, studied under acid conditions appropriate to oxygen reduction. Pt7 and a few other cluster sizes show "normal" oxygen reduction activity, similar to what is measured for Pt nanoparticles on GC under the same conditions. Many of the small clusters, however, are found to catalyze highly efficient oxidation, by water, of the glassy carbon support, with essentially no overpotential. The high activity for carbon oxidation for many Ptn/GC electrodes and the absence of significant carbon oxidation for a GC electrode with Pt nanoparticles raise the question of whether small Pt clusters may be responsible for much of the corrosion observed in Pt/carbon electrodes. This system provides another example where activity for oxidation catalysis is anticorrelated with the Pt core level binding energies, indicating that it is electronic, rather than geometric, structure that limits activity.

5.
Phys Chem Chem Phys ; 18(7): 5299-305, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26818786

ABSTRACT

1,4-Di-n-octyloxy-2,5-bis(pyren-1-ylethenyl)benzene (bis-pyrene) has been studied by the means of surface cavity ring-down (s-CRD) spectroscopy on an amorphous BK7 glass substrate and scanning tunnelling microscopy (STM) on Au(111). Absorption spectra show a modification of the optical properties as a function of coverage, i.e. appearance of a shoulder around 505 nm followed by a saturation of the intensity of this signal observed at higher coverages. We attribute this shoulder to the change of the molecular orientation between the first and the second monolayer and thus to an interfacial effect. These results are confirmed by scanning tunnelling microscopy (STM) measurements where the bis-pyrene molecules have been deposited on Au(111) at room temperature (RT) and onto a cold substrate. Independently of the temperature in the range from 210 K to RT, the first monolayer is always highly organized. At low temperature bis-pyrene molecules constituting the second monolayer are randomly distributed, suggesting that self-organisation is kinetically hindered. Deposited at room temperature, the molecular diffusion is enhanced and the formation of an organized second layer takes place after storing the sample for 150 minutes at room temperature. A HOMO-LUMO gap of 2.85 eV has been determined by scanning tunnelling spectroscopy, which is in very good agreement with the observed optical transition at 434 nm (2.86 eV) in s-CRD spectroscopy.

6.
Phys Chem Chem Phys ; 17(27): 17601-10, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26018430

ABSTRACT

Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...