Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 90(8): 084706, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472650

ABSTRACT

We developed an impedance bridge that operates at cryogenic temperatures (down to 60 mK) and in perpendicular magnetic fields up to at least 12 T. This is achieved by mounting a GaAs HEMT amplifier perpendicular to a printed circuit board containing the device under test and thereby parallel to the magnetic field. The measured amplitude and phase of the output signal allows for the separation of the total impedance into an absolute capacitance and a resistance. Through a detailed noise characterization, we find that the best resolution is obtained when operating the HEMT amplifier at the highest gain. We obtained a resolution in the absolute capacitance of 6.4 aF/Hz at 77 K on a comb-drive actuator while maintaining a small excitation amplitude of 15 kBT/e. We show the magnetic field functionality of our impedance bridge by measuring the quantum Hall plateaus of a top-gated hBN/graphene/hBN heterostructure at 60 mK with a probe signal of 12.8 kBT/e.

2.
Nano Lett ; 17(3): 1538-1544, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28165747

ABSTRACT

Group IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the Ge0.87Sn0.13 shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices.

3.
ACS Appl Mater Interfaces ; 9(10): 9102-9109, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28221764

ABSTRACT

The bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4-0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance-voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at. % and Si-contents from 0 to 10 at. % particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0-12.5 at. %). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer nonradiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action.

4.
ACS Appl Mater Interfaces ; 8(20): 13133-9, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27149260

ABSTRACT

(Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology. Despite the multielemental interface and large Sn content of up to 14 atom %, the HfO2/(Si)GeSn capacitors show small frequency dispersion and stretch-out. The formed TaN/HfO2/(Si)GeSn capacitors present a low leakage current of 2 × 10(-8) A/cm(2) at -1 V and a high breakdown field of ∼8 MV/cm. For large Sn content SiGeSn/GeSn direct band gap heterostructures, process temperatures below 350 °C are required for integration. We developed an atomic vapor deposition process for TaN metal gate on HfO2 high-k dielectric and validated it by resistivity as well as temperature and frequency dependent capacitance-voltage measurements of capacitors on SiGeSn and GeSn. The densities of interface traps are deduced to be in the low 10(12) cm(-2) eV(-1) range and do not depend on the Sn-concentration. The new processes developed here are compatible with (Si)GeSn integration in large scale applications.

5.
Opt Express ; 24(2): 1358-67, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832516

ABSTRACT

We present results on CVD growth and electro-optical characterization of Ge(0.92)Sn(0.08)/Ge p-i-n heterostructure diodes. The suitability of Ge as barriers for direct bandgap GeSn active layers in different LED geometries, such as double heterostructures and multi quantum wells is discussed based on electroluminescence data. Theoretical calculations by effective mass and 6 band k∙p method reveal low barrier heights for this specific structure. Best configurations offer only a maximum barrier height for electrons of about 40 meV at the Γ point at room temperature (e.g. 300 K), evidently insufficient for proper light emitting devices. An alternative solution using SiGeSn as barrier material is introduced, which provides appropriate band alignment for both electrons and holes resulting in efficient confinement in direct bandgap GeSn wells. Finally, epitaxial growth of such a complete SiGeSn/GeSn/SiGeSn double heterostructure including doping is shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...