Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(3): 1096-1110, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37749698

ABSTRACT

Observed photon count rates must be corrected for detector dead time effects for accurate quantification, especially at high count rates. We present the "constant k-ratio" method, a new approach for calibrating dead time for wavelength dispersive spectrometers by measuring k-ratios as a function of beam current. The method is based on the observation that for a given emission line at a specific take-off angle and electron beam energy, the intensity ratio from two materials containing the element should remain constant as a function of beam current, if the dead time calibration is accurate. The method has the advantage that it does not rely on the linearity of the beam current picoammeter, yet also allows the analyst to evaluate the picoammeter linearity, another critical parameter in EPMA calibration. By simultaneously comparing k-ratios for all spectrometers, one can also ascertain k-ratio consensus, essential for inter-laboratory comparisons. We also introduce improved dead time expressions and provide best practices on how to perform these instrument calibrations using this new "constant k-ratio" method. These improvements enable quantitative analysis of major and minor elements with high accuracy at high beam currents, simultaneously with trace elements with high sensitivity, for point analyses and X-ray mapping.

3.
Geochim Cosmochim Acta ; 277: 87-110, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32606478

ABSTRACT

We conducted experiments at high pressure (P) and temperature (T) to measure hydrogen solubility in plagioclase (Pl) with a range of compositions (An15 to An94). Experiments were run at 700-850 °C, 0.5 GPa, and f O 2 close to either the Ni-NiO (NNO) or iron-wüstite (IW) oxygen buffers. Experiments at 700 °C on An15 (containing 0.03 wt% FeO) reveal no dependence of H solubility on f O 2 between IW and NNO, but experiments at 800-850 °C on other compositions (with 0.3-0.5 wt% FeO) demonstrate that H solubility is enhanced by a factor of ~2 to 3 at IW compared to NNO, consistent with previous experiments by Yang (2012a) on An58. By analogy with synthetic hydrogen feldspar (HAlSi3O8), we infer that the predominant mechanism for H incorporation in Pl is through bonding to O atoms adjacent to M-site vacancies, and we propose likely O sites for H incorporation based on M-O bond lengths in anhydrous Pl structures. Increased uptake of structurally bound H at low f O 2 is explained by the formation of defect associates resulting from the reduction of Fe3+ in tetrahedral sites to Fe2+, allowing additional H to be incorporated in adjacent M-site vacancies. This mechanism counteracts the expected effect of water fugacity on H solubility. We also speculate on possible substitutions of H on tetrahedral vacancies, as well as coupled H-F substitution. Enhanced incorporation of H in Pl at low f O 2 may have implications for estimating the water content of the lunar magma ocean. However, mechanisms unrelated to low f O 2 are needed to explain high H contents in terrestrial Pl xenocrysts, such as those found in basalts from the Basin and Range.

4.
Microsc Microanal ; 25(3): 664-674, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30977456

ABSTRACT

The recent availability of Schottky-type field emission electron microprobes provides incentive to consider analyzing micrometer-sized features. Yet, to quantify sub-micrometer-sized features, the electron interaction volume must be reduced by decreasing accelerating voltage. However, the K lines of the transition elements (e.g., Fe) then cannot be excited, and the L lines must be used. The Fe Lα1,2 line is the most intense of the L series but bonding effects change its atomic parameters because it involves a valence band electron transition. For successful traditional electron probe microanalysis, the mass absorption coefficient (MAC) must be accurately known, but the MAC of Fe Lα1,2 radiation by Fe atoms varies from one Fe-compound to another and is not well known. We show that the conventional method of measuring the MAC by an electron probe cannot be used in close proximity to absorption edges, making its accurate determination impossible. Fortunately, we demonstrate, using a set of Fe-silicide compounds, that it is possible to derive an accurate calibration curve, for a given accelerating voltage and takeoff angle, which can be used to quantify Fe in Fe-silicide compounds. The calibration curve can be applied to any spectrometer without calibration and gives accurate quantification results.

5.
Nature ; 452(7185): 311-6, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-18354475

ABSTRACT

The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.

SELECTION OF CITATIONS
SEARCH DETAIL
...