Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.873
Filter
1.
Sci Rep ; 14(1): 23196, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39368993

ABSTRACT

Heart sound auscultation plays a crucial role in the early diagnosis of cardiovascular diseases. In recent years, great achievements have been made in the automatic classification of heart sounds, but most methods are based on segmentation features and traditional classifiers and do not fully exploit existing deep networks. This paper proposes a cardiac audio classification method based on image expression of multidimensional features (CACIEMDF). First, a 102-dimensional feature vector is designed by combining the characteristics of heart sound data in the time domain, frequency domain and statistical domain. Based on the feature vector, a two-dimensional feature projection space is constructed by PCA dimensionality reduction and the convex hull algorithm, and 102 pairs of coordinate representations of the feature vector in the two-dimensional space are calculated. Each one-dimensional component of the feature vector corresponds to a pair of 2D coordinate representations. Finally, the one-dimensional feature component value and its divergence into categories are used to fill the three channels of a color image, and a Gaussian model is used to dye the image to enrich its content. The color image is sent to a deep network such as ResNet50 for classification. In this paper, three public heart sound datasets are fused, and experiments are conducted using the above methods. The results show that for the two-classification/five-classification task of heart sounds, the method in this paper can achieve a classification accuracy of 95.68%/94.53% when combined with the current deep network.


Subject(s)
Algorithms , Heart Sounds , Humans , Heart Sounds/physiology , Image Processing, Computer-Assisted/methods , Heart Auscultation/methods
2.
BMC Cancer ; 24(1): 1227, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369189

ABSTRACT

BACKGROUND: In recent years, the addition of cetuximab to chemotherapy has improved treatment outcomes for patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). In this study, we present the real-world survival data of R/M HNSCC patients who received cetuximab-containing regimens from thirteen medical centers in Taiwan, as well as a three-level risk stratification model for this patient population. METHODS: This study enrolled R/M HNSCC patients from thirteen medical centers in Taiwan who received cetuximab-containing regimens from January 1, 2017 to June 6, 2022. The cases were divided into a training cohort and a validation cohort based on the start of treatment. Overall survival (OS) was evaluated in both cohorts and exploratory analysis was performed to identify associated adverse clinical and laboratory factors. The results of the exploratory analysis were used to construct a three-level risk stratification prediction model for OS. RESULTS: A total of 1434 patients with R/M HNSCC were enrolled in this study and received cetuximab-containing regimens. The overall population had a median OS of 8.57 months (95% CI: 8.07 - 9.08). Multivariate analysis of the training cohort identified poor ECOG performance status, heavy alcohol consumption, and prior adjuvant CCRT or lack of prior RT as adverse prognostic factors. Comparison of laboratory data between patients with OS≦6 and OS > 6 also revealed unfavorable factors, including increased white blood cell count, decreased hemoglobin level, increased platelet count, increased absolute neutrophil count, decreased absolute lymphocyte count, and increased neutrophil-to-lymphocyte ratio. Using forward prediction, a three-level risk stratification prediction model was constructed using the variables of ECOG performance status, alcohol consumption, skin metastasis, modality of radiation therapy, hemoglobin level, and neutrophil-to-lymphocyte ratio. The median OS in the low-risk, intermediate-risk, and high-risk groups were 12.02 months (95% CI 10.44-13.61), 7.5 months (95% CI 7.33-8.17), and 4.01 months (95% CI 3.94-4.08), respectively, with a log-rank test p-value < 0.001. CONCLUSION: This study presents a three-level risk stratification model with strong prediction ability for OS in R/M HNSCC patients who received cetuximab-containing regimens. The results are based on real-world data and may provide valuable information for clinicians in treatment planning and future drug development.


Subject(s)
Cetuximab , Head and Neck Neoplasms , Neoplasm Recurrence, Local , Squamous Cell Carcinoma of Head and Neck , Humans , Cetuximab/therapeutic use , Cetuximab/administration & dosage , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Female , Male , Middle Aged , Prognosis , Aged , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/mortality , Risk Assessment/methods , Taiwan/epidemiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Adult , Risk Factors
3.
J Inflamm Res ; 17: 6989-7003, 2024.
Article in English | MEDLINE | ID: mdl-39372586

ABSTRACT

Purpose: To elucidate the predictive values of adipocytokines in patients with acute coronary syndrome (ACS). Patients and Methods: Overall, 297 patients with ACS were consecutively enrolled in this prospective cohort study between June 2015 and July 2017 and completed follow-up with a median follow-up time of 6.5 years. For consistency, the last visit date was June 20, 2023. Serum levels of retinol-binding protein-4 (RBP4), interleukin-1ß (IL-1ß), monocyte chemoattractant protein 1(MCP-1), adrenomedullin (ADM), netrin 1 (NTN 1), and omentin were measured using enzyme-linked immunosorbent assay. Follow-up data were collected during clinical visits or through telephone interviews at 1, 3, 6, 12 months, and annually. The primary endpoint was defined as major adverse cardiovascular events (MACEs), including all-cause mortality, rehospitalization for percutaneous coronary intervention, and severe angina requiring rehospitalization. Results: All biomarkers displayed a good diagnostic ability of MACEs. The Kaplan-Meier curve showed that the cumulative survival rates of high level of RBP4, IL-1ß, and MCP-1 and low level of the ADM, NTN1, and omentin had lower cumulative survival rates (Log rank tests: all p<0.05). After adjustment in the Cox hazard proportional model, the results were RBP4 ≥ 6.87 ng/mL, hazard ratio (HR)=2.512, p=0.003; IL-1ß≥ 58.95 pg/mL, HR=3.809, p<0.001; MCP-1 ≥ 401.75 pg/mL, HR=4.047, p<0.001; ADM≤120.01 ng/mL, HR=3.930, p=0.008; NTN1 ≤63.7 pg/mL, HR=3.345, p=0.007; omentin ≤ 4.54 ng/mL, HR=2.830, p=0.004. P-values for interaction were > 0.05 in the sex, age, and dyslipidemia subgroups. Conclusion: Pro-inflammation adipocytokines RBP4, IL-1ß, and MCP-1 increased and anti-inflammation biomarkers ADM, NTN1, and omentin decreased were independently associated with a higher risk of MACEs in patients with ACS.

4.
J Hepatocell Carcinoma ; 11: 1875-1890, 2024.
Article in English | MEDLINE | ID: mdl-39372711

ABSTRACT

Background: Hepatitis often occurs after initiating immune checkpoint inhibitor (ICI) treatment. The time and grade of hepatitis after ICI starts and the prognostic role of immune-related hepatitis in patients with advanced hepatocellular carcinoma (aHCC) remain unclear. Methods: In this real-world analysis, we enrolled aHCC patients receiving ICIs, documented the highest level of liver enzymes during/after ICIs, and analyzed the survival impact of different hepatitis patterns. Results: One hundred and ninety-three aHCC patients receiving ICIs were recruited. During ICIs, 88.6% of patients experienced aspartate transaminase (AST) elevations (Grade III/IV: 7.8%). For alanine transaminase (ALT), 81.3% had elevated levels (Grade III/IV: 3.6%), and 41.5% of patients had elevated bilirubin levels (Grade 3/4: 6.7%). The median AST, ALT, and total bilirubin values significantly increased after ICI treatment initiated (all p < 0.001) and, similarly, after excluding progressive disease (p = 0.014, p = 0.002, p < 0.001). The median time of hepatitis occurrence is from the 4.0th to 15.9th weeks. Multivariable analysis showed that patterns of liver enzyme change of AST and total bilirubin in patients receiving ICIs significantly correlate to overall survival (OS, p = 0.009 and 0.001, respectively). After ICI termination, patients with elevated bilirubin (p = 0.003) and AST (p = 0.005) would indicate poor survival, with adjustment of viral hepatitis and ICI responses. Conclusion: Hepatitis emerges between the 4th and 20th weeks post-ICI initiation. Changes in liver enzymes during ICI therapy do not directly affect OS, implying the safety of ICI use when corticosteroids are promptly administered if clinically indicated.

5.
JAMA Netw Open ; 7(10): e2436915, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39356505

ABSTRACT

Importance: Schizophrenia episodes may be triggered by short-term environmental stimuli. Short-term increases in ambient air pollution levels may elevate the risk of schizophrenia episodes, yet few epidemiologic studies have examined this association. Objective: To investigate whether short-term increases in air pollution levels are associated with an additional risk of schizophrenia episodes, independent of absolute air pollution concentrations, and whether sustained increases in air pollution levels for several days are associated with more pronounced risks of schizophrenia episodes. Design, Setting, and Participants: This nationwide, population-based, time-stratified case-crossover study was performed based on hospitalization records for schizophrenia across 295 administrative divisions of prefecture-level or above cities in China. Records were extracted from 2 major health insurance systems from January 1, 2013, to December 31, 2017. Thirty-six cities with a small number of schizophrenia hospitalizations (n < 50) were excluded. Data analysis for this study was performed from January to March 2024. Exposure: Daily absolute concentrations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide were collected. Air pollution increases between neighboring days (APINs) were generated as the differences in absolute air pollution concentrations on the current day minus that on the previous day. Sustained increases (APIN ≥5 µg/m3 for PM2.5 and PM10, APIN ≥1 µg/m3 for nitrogen dioxide and sulfur dioxide, and APIN ≥0.05 mg/m3 for carbon monoxide) lasting for 1 or more to 4 or more days were defined for different air pollutants. Main Outcome and Measure: Patients with schizophrenia episodes were identified by principal discharge diagnoses of schizophrenia. A conditional logistic regression model was used to capture the associations of absolute concentrations, APINs, and sustained increase events for different air pollutants with risks of schizophrenia hospitalizations. Results: The study included 817 296 hospitalization records for schizophrenia across 259 Chinese cities (30.6% aged 0-39 years, 56.4% aged 40-64 years, and 13.0% aged ≥65 years; 55.04% male). After adjusting for the absolute concentrations of respective air pollutants, per-IQR increases in 6-day moving average (lag0-5) APINs of PM2.5, PM10, nitrogen dioxide, sulfur dioxide, and carbon monoxide were associated with increases of 2.37% (95% CI, 0.88%-3.88%), 2.95% (95% CI, 1.46%-4.47%), 4.61% (95% CI, 2.93%-6.32%), 2.16% (95% CI, 0.59%-3.76%), and 2.02% (95% CI, 0.39%-3.68%) in schizophrenia hospitalizations, respectively. Greater risks of schizophrenia hospitalizations were associated with sustained increases in air pollutants lasting for longer durations up to 4 or more days. Conclusions and Relevance: This case-crossover study of the association between ambient air pollution increases and schizophrenia hospitalizations provides novel evidence that short-term increases in ambient air pollution levels were positively associated with an elevated risk of schizophrenia episodes. Future schizophrenia prevention practices should pay additional attention to APINs, especially sustained increases in air pollution levels for longer durations, besides the absolute air pollution concentrations.


Subject(s)
Air Pollutants , Air Pollution , Cross-Over Studies , Hospitalization , Particulate Matter , Schizophrenia , Humans , Schizophrenia/epidemiology , Schizophrenia/etiology , China/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/statistics & numerical data , Hospitalization/statistics & numerical data , Male , Female , Adult , Middle Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Aged , Sulfur Dioxide/analysis , Sulfur Dioxide/adverse effects , Young Adult
6.
J Neurosci Res ; 102(10): e25388, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39367566

ABSTRACT

Thalamocortical connectivity is associated with cognitive and affective processing. The role of thalamocortical connectivity in the pathomechanism of treatment-resistant depression (TRD) remains unclear. This study included 48 patients with TRD and 48 healthy individuals. We investigated thalamocortical connectivity by performing resting-state functional MRI with the bilateral thalamus as the seed. In addition, patients with TRD were evaluated using the Montgomery-Åsberg Depression Rating Scale (MADRS). Compared with the healthy individuals, the patients with TRD exhibited increased functional connectivity (FC) of the thalamus with the insula and superior temporal cortex and reduced the FC of the thalamus with the anterior paracingulate cortex and cerebellum crus II. Our study may support the crucial role of thalamocortical dysconnectivity in the TRD pathomechanism. However, the small sample size may limit the statistical power. A future study with a large sample size of patients with TRD would be required to validate our findings.


Subject(s)
Cerebral Cortex , Depressive Disorder, Treatment-Resistant , Magnetic Resonance Imaging , Thalamus , Humans , Female , Male , Thalamus/diagnostic imaging , Thalamus/physiopathology , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/physiopathology , Adult , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Brain Mapping
7.
Adv Mater ; : e2408936, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221549

ABSTRACT

Escalating energy demands of self-independent on-skin/wearable electronics impose challenges on corresponding power sources to offer greater power density, permeability, and stretchability. Here, a high-efficient breathable and stretchable monolithic hybrid triboelectric-piezoelectric-electromagnetic nanogenerator-based electronic skin (TPEG-skin) is reported via sandwiching a liquid metal mesh with two-layer topological insulator-piezoelectric polymer composite nanofibers. TPEG-skin concurrently extracts biomechanical energy (from body motions) and electromagnetic radiations (from adjacent appliances), operating as epidermal power sources and whole-body self-powered sensors. Topological insulators with conductive surface states supply notably enhanced triboelectric and piezoelectric effects, endowing TPEG-skin with a 288 V output voltage (10 N, 4 Hz), ∼3 times that of state-of-the-art devices. Liquid metal meshes serve as breathable electrodes and extract ambient electromagnetic pollution (±60 V, ±1.6 µA cm-2). TPEG-skin implements self-powered physiological and body motion monitoring and system-level human-machine interactions. This study provides compatible energy strategies for on-skin/wearable electronics with high power density, monolithic device integration, and multifunctionality.

8.
Phytochemistry ; : 114273, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245154

ABSTRACT

Three previously undescribed pyrrolizidinone alkaloids, penicipyrrolizidinones A and B (1 and 2), possessing an unprecedented 2-methyl-2-(oct-6-enoyl)pyrrolizidin-3-one skeleton, and penicipyrrolizidinone C (3), featuring a rare 1-alkenyl-2-methyl-pyrrolizidin-3,7-dione skeleton, together with four known pyrrolidine derivatives (4-7) were isolated from the mangrove-derived fungus Penicillium sp. DM27. Their structures were elucidated through comprehensive spectroscopic analysis, theoretical calculations of ECD spectra, and the modified Mosher's method. A plausible biosynthetic pathway for penicipyrrolizidinones A-C (1-3) was proposed. Compounds 4 and 5 exhibited moderate cytotoxicity against B16-F10 melanoma cells with IC50 values of 10.5 µM and 15.5 µM, respectively.

9.
Methods Enzymol ; 704: 91-111, 2024.
Article in English | MEDLINE | ID: mdl-39300658

ABSTRACT

Cyclopropane and azacyclopropane, also known as aziridine, moieties are found in natural products. These moieties serve as pivotal components that lead to a broad spectrum of biological activities. While diverse strategies involving various classes of enzymes are utilized to catalyze formation of these strained three-membered rings, how non-heme iron and 2-oxoglutarate (Fe/2OG) dependent enzymes enable regio- and stereo-selective C-C and C-N ring closure has only been reported very recently. Herein, we present detailed experimental protocols for mechanistically studying Fe/2OG enzymes that catalyze cyclopropanation and aziridination reactions. These protocols include protein purification, in vitro assays, biophysical spectroscopies, and isotope-tracer experiments. We also report how to use in silico approaches to look for Fe/2OG aziridinases. Furthermore, our current mechanistic understanding of three-membered ring formation is discussed. These results not only shed light on the reaction mechanisms of Fe/2OG enzymes-catalyzed cyclopropanation and aziridination, but also open avenues for expanding the reaction repertoire of the Fe/2OG enzyme superfamily.


Subject(s)
Aziridines , Cyclopropanes , Ketoglutaric Acids , Cyclopropanes/chemistry , Cyclopropanes/metabolism , Aziridines/chemistry , Aziridines/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/chemistry , Iron/chemistry , Iron/metabolism , Nonheme Iron Proteins/chemistry , Nonheme Iron Proteins/metabolism , Biocatalysis , Enzyme Assays/methods , Catalysis
10.
Heliyon ; 10(16): e36143, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253259

ABSTRACT

Technological advances are crucial for the optimization of gastric cancer surgery, and the success of any gastric cancer surgery is based on the correct and precise anatomical determination of the primary tumour and tissue structures. Real-time imaging-guided surgery is showing increasing potential and utility, mainly because it helps to aid intraoperative decision-making. However, intraoperative imaging faces many challenges in the field of gastric cancer. This article summarizes and discusses the following clinical applications of real-time optical imaging and fluorescence-guided surgery for gastric cancer: (1) the potential of quantitative fluorescence imaging in assessing tissue perfusion, (2) vascular navigation and determination of tumour margins, (3) the advantages and limitations of lymph node drainage assessment, and (4) identification of peritoneal metastases. In addition, preclinical study of tumour-targeted fluorescence imaging are discussed.

12.
Phys Rev Lett ; 133(9): 096302, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39270171

ABSTRACT

The quantum Hall (QH) effect is one of the most widely studied physical phenomenon in two dimensions. The plateau-plateau transition within this effect can be comprehensively described by the scaling theory, which encompasses three pivotal exponents: the critical exponent κ, the inelastic scattering exponent p, and the universal exponent γ. Prior studies have focused on measuring κ and estimating γ, assuming a constant p value of 2 across magnetic fields. Here, our work marks a significant advancement by measuring all three exponents within a single graphene device and a conventional two-dimensional electron system. This study uniquely determines p at low magnetic fields (weak localization region and well outside the QH regime) and high magnetic fields (in the vicinity of the QH regime). Employing a comprehensive analytical approach that includes weak localization, plateau-plateau transitions, and variable range hopping, we have directly determined κ, p, and γ. Our findings reveal a distinct variation in p, shifting from 1 in the low magnetic field regime to 2 in the QH regime in graphene.

13.
eNeuro ; 11(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39256039

ABSTRACT

Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.


Subject(s)
Excitatory Postsynaptic Potentials , NAV1.8 Voltage-Gated Sodium Channel , Nociceptors , Spinothalamic Tracts , Synaptic Transmission , Animals , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , Nociceptors/metabolism , Nociceptors/physiology , Spinothalamic Tracts/metabolism , Excitatory Postsynaptic Potentials/physiology , Male , Synaptic Transmission/physiology , Mice , Optogenetics , Mice, Inbred C57BL , Mice, Transgenic
14.
Int J Med Inform ; 192: 105634, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39305561

ABSTRACT

BACKGROUND: As the number of revision total knee arthroplasty (TKA) continues to rise, close attention has been paid to factors influencing postoperative length of stay (LOS). The aim of this study is to develop generalizable machine learning (ML) algorithms to predict extended LOS following revision TKA using data from a national database. METHODS: 23,656 patients undergoing revision TKA between 2013 and 2020 were identified using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. Patients with missing data and those undergoing re-revision or conversion from unicompartmental knee arthroplasty were excluded. Four ML algorithms were applied and evaluated based on their (1) ability to distinguish between at-risk and not-at-risk patients, (2) accuracy, (3) calibration, and (4) clinical utility. RESULTS: All four ML predictive algorithms demonstrated good accuracy, calibration, clinical utility, and discrimination, with all models achieving a similar area under the curve (AUC) (AUCLR=AUCRF=AUCHGB=0.75, AUCANN=0.74). The most important predictors of prolonged LOS were found to be operative time, preoperative diagnosis of sepsis, and body mass index (BMI). CONCLUSIONS: ML models developed in this study demonstrated good performance in predicting extended LOS in patients undergoing revision TKA. Our findings highlight the importance of utilizing nationally representative patient data for model development. Prolonged operative time, preoperative sepsis, BMI, and elevated preoperative serum creatinine and BUN were noted to be significant predictors of prolonged LOS. Knowledge of these associations may aid with patient-specific preoperative planning, discharge planning, patient counseling, and cost containment with revision TKA.

15.
Animals (Basel) ; 14(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39272256

ABSTRACT

This experiment aimed to study the effects of tannin supplementation on growth performance, rumen fermentation characteristics, apparent digestibility and serum biochemistry, and antioxidant and immune indexes in fattening lambs. A total of 36 male Hu sheep lambs (body weight = 15.83 ± 0.48 kg and days of age = 55 ± 2 d) were fed a high-concentrate diet and randomly divided into one of three groups of 12 animals each: control with no tannin (CON) and tannin treatments (TA1, 3 g/d per lamb; TA2, 6 g/d per lamb). The feeding experiment lasted for 60 d. The results showed that the average daily gain and ruminal propionate content of lambs in the TA1 group were higher (p < 0.05) than those in the CON group. Lambs fed tannin had significantly increased (p < 0.05) microbial protein and decreased (p < 0.05) ammonia nitrogen concentrations in the rumen. In addition, the crude protein and neutral detergent fiber digestibility of the TA2 group were significantly decreased (p < 0.05) as compared with the TA1 and CON groups, respectively. The serum concentrations of triglyceride, immunoglobulin A, and catalase and the total antioxidant capacity were higher (p < 0.05) in the TA1 group that those in the CON group, whereas an opposite trend of urea nitrogen, interleukin-1ß, and malondialdehyde was found between the two groups. Also, tannin supplementation increased (p < 0.05) Lactobacillus and decreased (p < 0.05) Salmonella counts in the feces of lambs. Taken together, tannin supplementation can improve the growth performance, immunity, and antioxidant ability of fattening lambs fed a high-concentrate diet.

16.
Diagnostics (Basel) ; 14(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39272637

ABSTRACT

Proteinuria is a common adverse event arising from treatment with bevacizumab, requiring diagnostic testing via 24-h urine collection. However, this method is cumbersome. We assessed urine screenings in gynecologic cancer patients from February 2021 to May 2022. Along with a simple urine dipstick (UD), the urine microalbumin, total protein, and creatinine were measured and calculated as the urine albumin to creatinine ratio (UACR) and the urine protein to creatinine ratio (UPCR), which were further adjusted through the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations to be estimated and correlated with 24-h urine total protein content. The incremental cost-effectiveness ratio was used for cost analysis. There were 129 urine samples from 36 patients. The sensitivity and specificity for the UACR were 0.56 and 0.97, and for the UPCR, 0.71 and 0.88, respectively. The 24-h TP correlated strongly with the UACR (r = 0.75; p < 0.001) and UPCR (r = 0.79; p < 0.001) and fair for the simple UD (r = 0.35; p < 0.001). The UPCR saves one unnecessary 24-h urine test for less than a dollar compared to a simple UD. The results indicate that using the UPCR could enhance diagnostic accuracy, lower costs, and reduce unnecessary 24-h urine sampling.

17.
J Med Chem ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258312

ABSTRACT

The FLT3-ITD (internal tandem duplication) mutant has been a promising target for acute myeloid leukemia (AML) drug discovery but is now facing the challenge of resistance due to point mutations. Herein, we have discovered a type II FLT3 inhibitor, SILA-123. This inhibitor has shown highly potent inhibitory effects against FLT3-WT (IC50 = 2.1 nM) and FLT3-ITD (IC50 = 1.0 nM), tumor cells with the FLT3-ITD mutant such as MOLM-13 (IC50 = 0.98 nM) and MV4-11 (IC50 = 0.19 nM), as well as BaF3 cells associated with the FLT3-ITD mutant and point mutations like BaF3-FLT3-ITD-G697R (IC50 = 3.0 nM). Moreover, SILA-123 exhibited promising kinome selectivity against 310 kinases (S score (10) = 0.06). In in vivo studies, SILA-123 significantly suppressed the tumor growth in MV4-11 (50 mg/kg/d, TGI = 87.3%) and BaF3-FLT3-ITD-G697R (50 mg/kg/d, TGI = 60.0%) cell-inoculated allograft models. Our data suggested that SILA-123 might be a promising drug candidate for FLT3-ITD-positive AML.

18.
Biomed Pharmacother ; 180: 117486, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321506

ABSTRACT

Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/ß-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.

19.
Methods Enzymol ; 704: 199-232, 2024.
Article in English | MEDLINE | ID: mdl-39300648

ABSTRACT

Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations. By using such a multi-faceted research approach, we have explored reaction mechanisms of desaturation and epoxidation catalyzed by a bi-functional Fe/2OG enzyme, AsqJ. Herein, we describe the experimental protocols and computational workflows used in our studies.


Subject(s)
Iron , Ketoglutaric Acids , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Iron/chemistry , Iron/metabolism , Kinetics , Crystallography, X-Ray/methods , Enzyme Assays/methods , Hydroxylation , Models, Molecular
20.
Article in English | MEDLINE | ID: mdl-39312432

ABSTRACT

Using acoustic vortex tweezers (AVT) to spatially accumulate microbubbles (MBs) shows promise for enhancing drug delivery efficiency and reducing off-target effects. The strong echogenicity of accumulated MBs also improves diagnostics via conventional ultrasound (US) B-mode imaging. However, the annular high-pressure distribution of AVT inhibits MBs inflow at the inlet, reducing MBs collection. The spatial resolution of US B-mode imaging further limits theranostic applications of AVT-mediated MBs accumulation. To address these challenges, we integrated an AVT waveform with volumetric super-resolution imaging (VSRI) to monitor the dynamic growth of MBs cluster during accumulation. We used a 5-MHz 2D array transducer for VSRI, employing plane wave pulses interleaved with accumulating pulses to retain MBs at a flow rate of 0.023-0.047 mL/s in a 3-mm vessel phantom. An asymmetrical AVT waveform (AVT*) was produced by modulating the pressure at the MBs inlet compared to the outlet. The effectiveness was validated in rat cerebral vessels for real-time volumetric tracking of MBs clusters. Microscopy observations showed that AVT* could quickly gather flowing MBs into cluster without repelling them at a flow rate of 0.023 mL/s. Statistical results indicated that microscopic data correlated better with VSRI than with B-mode images, suggesting VSRI suffices to detect the dynamics of AVT*-actuated MBs accumulation in real-time. Additionally, VSRI detected a significant increase in MBs cluster size over time during AVT* in the superior sagittal sinus of the rat brain. These findings demonstrate that the proposed strategy can accumulate the flowing MBs at a desired location and simultaneously observe this phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL