Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
1.
Org Lett ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023056

ABSTRACT

Alkynones are valuable compounds with applications in various areas. In this work, we developed an efficient carbonylation procedure for the carbonylative cross-coupling of aryl thianthrenium salts with aromatic alkynes. Various useful alkynones were produced in moderate to excellent yields under mild conditions. Notably, among the various tolerated functional groups, the bromide group can be maintained, which is ready for further coupling reactions.

2.
Int J Med Sci ; 21(9): 1738-1755, 2024.
Article in English | MEDLINE | ID: mdl-39006851

ABSTRACT

Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1ß and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1ß showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.


Subject(s)
Brain-Gut Axis , Disease Models, Animal , Irritable Bowel Syndrome , Zonula Occludens-1 Protein , Animals , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/pathology , Zonula Occludens-1 Protein/metabolism , Mice , Phosphorylation , Male , Brain-Gut Axis/physiology , Stress, Psychological/metabolism , Stress, Psychological/immunology , Humans , Mice, Inbred C57BL
3.
J Integr Plant Biol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888227

ABSTRACT

Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.

4.
Front Neurol ; 15: 1360609, 2024.
Article in English | MEDLINE | ID: mdl-38841701

ABSTRACT

Background: Symptomatic intracranial in-stent restenosis (sISR) poses a major challenge in the management of cerebrovascular diseases, often requiring effective and safe treatment options. Objectives: This study aims to evaluate the efficacy and safety of paclitaxel-coated balloon (PCB) angioplasty for treating sISR. Methods: We conducted a retrospective analysis of five patients aged 49-74 years, who were treated with PCB angioplasty between January 2017 and June 2022. Treatment procedures included pre-operative digital subtraction angiography, antiplatelet therapy, and the use of the SeQuent Please balloon. Patients received aspirin and clopidogrel prior to and after the procedure. Results: The procedure achieved a 100% success rate. The degree of ISR was significantly reduced from an average pre-operative rate of 72±18.9% to a post-operative rate of 34±8.22%. Long-term follow-up showed that the majority of patients did not experience restenosis, confirming the long-term effectiveness of the treatment. Conclusions: PCB angioplasty demonstrates significant potential as an effective and safe treatment option for patients with sISR, especially those considered to be at high risk. This study supports further investigation into PCB angioplasty as a standard treatment for sISR.

5.
J Org Chem ; 89(12): 9001-9010, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38842478

ABSTRACT

2,3-Allenamides are an important class of unsaturated group-substituted carbonyl compounds. A palladium-catalyzed aminocarbonylation of propargyl acetates with amines for the synthesized tri-/tetrasubstituted 2,3-allenamides has been developed. A broad range of tri-/tetrasubstituted 2,3-allenamides have been prepared from propargyl acetates in good to excellent yields. The reaction featured mild reaction conditions and good functional group tolerance. The applicability of this methodology was further highlighted by the late-stage modification of several natural products and pharmaceuticals.

6.
Beilstein J Org Chem ; 20: 973-1000, 2024.
Article in English | MEDLINE | ID: mdl-38711593

ABSTRACT

Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.

7.
J Phys Chem A ; 128(19): 3777-3783, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38691449

ABSTRACT

Transition metal-catalyzed multicomponent carbonylation is an efficient synthetic strategy to access multifunctional esters in high yields with broad functional group tolerance and good chemoselectivity. Considering the development of highly efficient synthetic methods for esters, it remains significant to grasp the mechanism of constructing multifunctional esters. Herein, density functional theoretical calculations were carried out to acquire mechanistic insight into the synthesis of ß-perfluoroalkyl esters from a specific palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using carbon monoxide. A detailed mechanistic understanding of this reaction route includes (1) multistep radical reaction process, (2) C-C coupling and CO insertion, (3) ligand exchange, and (4) Pd-based intermediate oxidation and reductive elimination. The multistep radical process was fundamentally rationalized, including Rf· formation and radicals A and E from unactivated alkene and CO oxidation, respectively. The potential energy calculation indicated that the CO insertion into the perfluorinated alkyl radicals preceded Pd-catalyzed oxidation in the competitively multistep free radical reaction process. In addition, the I-/PhO- exchange step was predicted to be spontaneous to products. The IGMH analysis further attested to the reductive elimination process involved in the rate-determining step. Thus, a simple and valid density functional theory (DFT) approach was developed to reveal the multistep radical mechanism for the Pd-catalyzed perfluoroalkylative carbonylation of unactivated alkenes to access functional ß-perfluoroalkyl esters.

8.
Small ; : e2401103, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709231

ABSTRACT

The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.

9.
Org Lett ; 26(22): 4779-4783, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38807481

ABSTRACT

A new strategy to obtain ß,γ-unsaturated ketones via the cross-coupling of 1,3-butadiene, alkyl bromides, and arylboronic acids under 1 bar of CO with nickel as the catalyst has been developed. This newly developed four-component carbonylation procedure features advantages including using a cheap catalytic system, high step economy, mild reaction conditions, and excellent 1,4-regioselectivity, thereby providing a sustainable and alternative tool for ß,γ-unsaturated ketones production compared to the present tactics. To elucidate the application potential of this method, olefin synthons are derived from the representative coupling product.

10.
Chem Commun (Camb) ; 60(35): 4656-4658, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38587483

ABSTRACT

Ketones exist widely in naturally occurring products and are indispensable building blocks in organic synthesis. Carbonylation represents one of the most straightforward methods for ketone preparation and has become an attractive field in modern organic chemistry as well. Among the strategies, photocatalytic carbonylation is also worthy of further exploration. Herein, we developed a three-component carbonylation that provides a new method for the synthesis of ketones from Hantzsch esters, CO and styrenes. The reaction was performed under a blue light environment and yields a series of ketones with moderate to good yields.

11.
Org Lett ; 26(15): 3140-3144, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38563571

ABSTRACT

Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.

12.
Chem Sci ; 15(11): 3996-4004, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487224

ABSTRACT

A multi-component carbonylation reaction is an efficient strategy for the synthesis of valuable carbonyl compounds from simple and readily available substrates. However, there remain challenges in carbonylation reactions where two CO molecules are converted to different groups in the target product. Considering the merit of complex amides, we reported here a copper-catalyzed multi-component borylamidation for the synthesis of γ-boryl amides. This method provides access to a wide range of functional γ-boryl amides from alkenes, amines, B2pin2, and CO with good yields and excellent diastereomeric ratios. Notably, two CO molecules were converted to methylene and carbonyl groups in the target amides. A series of amines were successfully involved in the transformation, including arylamines, aliphatic amines, and hydrochloride salts of secondary aliphatic amines.

13.
J Dermatol Sci ; 113(3): 93-102, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383230

ABSTRACT

BACKGROUND: Aberrant keratinocytes differentiation has been demonstrated to be associated with a number of skin diseases. The roles of lncRNAs in keratinocytes differentiation remain to be largely unknown. OBJECTIVE: Here we aim to investigate the role of lnc-DC in regulating epidermal keratinocytes differentiation. METHODS: Expression of lnc-DC in the skin was queried in AnnoLnc and verified by FISH. The lncRNA expression profiles during keratinocytes differentiation were reanalyzed and verified by qPCR and FISH. Gene knock-down and over-expression were used to explore the role of lnc-DC in keratinocytes differentiation. The downstream target of lnc-DC was screened by whole transcriptome sequencing. CUT&RUN assay and siRNAs transfection was used to reveal the regulatory effect of GRHL3 on lnc-DC. The mechanism of lnc-DC regulating ZNF750 was revealed by RIP assay and RNA stability assay. RESULTS: Lnc-DC was biasedly expressed in skin and up-regulated during epidermal keratinocytes differentiation. Knockdown lnc-DC repressed epidermal keratinocytes differentiation while over-express lnc-DC showed the opposite effect. GRHL3, a well-known transcription factor regulating keratinocytes differentiation, could bind to the promoter of lnc-DC and regulate its expression. By whole transcriptome sequencing, we identified that ZNF750 was a downstream target of lnc-DC during keratinocytes differentiation. Mechanistically, lnc-DC interacted with RNA binding protein IGF2BP2 to stabilize ZNF750 mRNA and up- regulated its downstream targets TINCR and KLF4. CONCLUSION: Our study revealed the novel role of GRHL3/lnc-DC/ZNF750 axis in regulating epidermal keratinocytes differentiation, which may provide new therapeutic targets of aberrant keratinocytes differentiation related skin diseases.


Subject(s)
RNA, Long Noncoding , Skin Diseases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Keratinocytes/metabolism , Skin/metabolism , Skin Diseases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism
14.
Chem Sci ; 15(4): 1418-1423, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274060

ABSTRACT

Difunctionalization of alkenes is an efficient strategy for the synthesis of complex compounds from readily available starting materials. Herein, we developed a copper-catalyzed visible-light-mediated trichloromethylative carbonylation of ethylene by employing commercially available CCl4 and CO as trichloromethyl and carbonyl sources, respectively. With this protocol, various nucleophiles including amines, phenols, and alcohols can be rapidly transformed into ß-trichloromethyl carboxylic acid derivatives with good functional-group tolerance. Bis-vinylated γ-trichloromethyl amides can also be obtained by adjusting the pressure of carbon monoxide and ethylene. In addition, this photocatalytic system can be successfully applied in the late-stage functionalization of bioactive molecules and pharmaceutical derivatives as well.

15.
Angew Chem Int Ed Engl ; 63(8): e202318257, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38116921

ABSTRACT

Multicomponent reactions, particularly those entailing four or more reagents, have presented a longstanding challenge due to the inherent complexities associated with balancing reactivity, selectivity, and compatibility. In this study, we describe a palladium-catalyzed multi-component fluoroalkylative carbonylation of 1,3-enynes. A series of products featuring three active functional groups-allene, fluoroalkyl, and carboxyl, were efficiently and selectively integrated in a single chemical operation. Furthermore, more intricate fluoroalkyl-substituted pyrimidinones can be constructed by simply altering the 1,3-bisnucleophilic reagent. This approach also provides a valuable strategy for the late-stage modification of naturally occurring molecules and concise construction of diverse cyclic compounds.

16.
Ther Adv Respir Dis ; 17: 17534666231212307, 2023.
Article in English | MEDLINE | ID: mdl-38049958

ABSTRACT

BACKGROUND: Little is known about immediate responses of blood perfusion to the balloon pulmonary angioplasty (BPA) procedure. OBJECTIVES: To investigate the changes in pulmonary perfusion of balloon-dilated vessels and untreated vessels with before, immediately after a single BPA and at follow-up. DESIGN: Retrospective single-center cohort study. METHODS: Patients who had chronic thromboembolic pulmonary hypertension (CTEPH) and completed the pulmonary perfusion single photon emission computed tomography (SPECT) imaging before, immediately after BPA and at follow-up were included. We evaluated the perfusion defects of both-lung, BPA target (balloon dilated) and non-target (untreated) vessel segments according to Begic 3-point scale in each lung segment. RESULTS: Forty patients (40 BPA procedures) were included and were given next BPA after 89 (62-125) days. The hemodynamic parameters including mPAP, PVR, and RAP were significantly improved after a single BPA. Visual scoring results of pulmonary perfusion imaging in 40 BPAs showed the perfusion defect scores of target vessels reduced from 5.6 ± 2.6 to 4.2 ± 2.2 (p < 0.001) immediately after BPA, and then further diminished to 3.1 ± 1.9 (p < 0.001) at follow-up. While in the non-target vessels, the post-BPA perfusion defect scores did not change significantly (13.4 ± 4.7 versus 12.8 ± 4.6, p = 0.182), but tended to decrease at follow-up (12.2 ± 4.2). However, there were 17 BPAs of which the post-BPA perfusion defect scores of non-target vessels increased significantly (p < 0.001), but decreased at follow-up. CONCLUSION: In addition to improving the blood perfusion of target vessels, BPA also has a certain effect on the perfusion of some non-target vessels.


Subject(s)
Angioplasty, Balloon , Hypertension, Pulmonary , Pulmonary Embolism , Humans , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/therapy , Retrospective Studies , Cohort Studies , Chronic Disease , Lung/diagnostic imaging , Angioplasty, Balloon/adverse effects , Angioplasty, Balloon/methods , Perfusion , Pulmonary Artery/diagnostic imaging
17.
Nat Commun ; 14(1): 7439, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978196

ABSTRACT

γ-Amino acids and peptides analogues are common constituents of building blocks for numerous biologically active molecules, pharmaceuticals, and natural products. In particular, γ-amino acids are providing with better metabolic stability than α-amino acids. Herein we report a multicomponent carbonylation technology that combines readily available amides, alkenes, and the feedstock gas carbon monoxide to build architecturally complex and functionally diverse γ-amino acid derivatives in a single step by the implementation of radical relay catalysis. This transformation can also be used as a late-stage functionalization strategy to deliver complex, advanced γ-amino acid products for pharmaceutical and other areas.


Subject(s)
Alkenes , Cobalt , Alkenes/chemistry , Peptides/chemistry , Amino Acids/chemistry , Amines/chemistry , Catalysis , Pharmaceutical Preparations
18.
Org Lett ; 25(47): 8535-8539, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37985463

ABSTRACT

A novel method for the nickel-catalyzed multicomponent aminofluoroalkylation/cyclization of styrenes with ethyl fluoroacetate and anilines has been developed. This protocol provides general and efficient access to a diverse range of fluoro-γ-lactams from simple and readily available starting materials. Control experiments prove the involvement of radical intermediates and excluded the presence of 2-fluoro-N-phenylacetamide.

19.
Org Lett ; 25(40): 7417-7421, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37795806

ABSTRACT

The direct concurrent installation of amide and ester groups across olefin motifs represents a powerful and promising functionalization tool in organic chemistry. Herein, a ligand-free cobalt-catalyzed four-component radical relay carbonylative difunctionalization of ethylene for the synthesis of 4-oxobutanoates has been developed. Valuable C4 building blocks were produced in a highly atom-economical fashion.

20.
Org Lett ; 25(42): 7700-7704, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37853515

ABSTRACT

A cobalt(II)-catalyzed C2-H carbonylation of indoles with amines toward indole-2-carboxamides has been developed. By employing Co(OAc)2·4H2O as an inexpensive catalyst and using benzene-1,3,5-triyl triformate (TFBen) as the CO surrogate, a variety of indole-2-carboxamide derivatives were produced in moderate to high yields. Additionally, several bioactive-molecule-related compounds can be applied as substrates, as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...