Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 921
Filter
1.
Int J Biochem Mol Biol ; 15(3): 51-59, 2024.
Article in English | MEDLINE | ID: mdl-39021869

ABSTRACT

INTRODUCTION: Human epidemiological studies have shown that diets rich in plant polyphenols have beneficial effects on various diseases including cancer. Epigallocatechin Gallate, a flavonoid polyphenol molecule, has been shown to be both chemotherapeutic and chemo-preventive in the treatment of several forms of cancer, including lung cancer. 80% of cancers of the lungs are non-small cell lung cancers. OBJECTIVE: The study was carried out to see the effects of Epigallocatechin Gallate in non-small cell lung cancer cells (A549) using in-vitro studies. MATERIALS AND METHODS: Cell Viability Assay was performed using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Wound Healing assay was also performed at different concentrations of the compound. Dexamethasone and Doxorubicin, the drugs with anti-cancer properties served as control. A549 cell lines were used. RESULTS: In the current study, it was demonstrated using Cell viability assay and Wound Healing assay that Epigallocatechin gallate exhibits anti-proliferative activity on A549 lung cancer cells and inhibits cancer cell proliferation in a concentration and time-dependent manner. It was observed that Epigallocatechin gallate (P = 0.0016, P = 0.0018) could significantly inhibit the growth of lung cancer cells with IC50 values 60.55 ± 1.0 µM. The result of wound Healing assay suggests that Epigallocatechin gallate can inhibit the proliferation and migration of A549 cells with concentrations near or higher to 50 µM. CONCLUSION: Epigallocatechin gallate's protective effect has been shown in A549 lung adenocarcinoma cells in a time and dose-dependent manner. This suggests the implication of Epigallocatechin gallate for the prevention and therapy for lung cancer.

2.
PeerJ ; 12: e17488, 2024.
Article in English | MEDLINE | ID: mdl-38827303

ABSTRACT

Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.


Subject(s)
Apoptosis , Catechin , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoblasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Catechin/analogs & derivatives , Catechin/pharmacology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Cadmium/toxicity , Cell Differentiation/drug effects , Cell Line , Membrane Proteins
3.
Food Res Int ; 189: 114536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876589

ABSTRACT

Walnut isolate protein (WPI)-epigallocatechin gallate (EGCG) conjugates can be employed to creat food-grade delivery systems for preserving bioactive compounds. In this study, WPI-EGCG nanoparticles (WENPs) were developed for encapsulating lycopene (LYC) using the ultrasound-assisted method. The results indicated successful loading of LYC into these WENPs, forming the WENPs/LYC (cylinder with 200-300 nm in length and 14.81-30.05 nm in diameter). Encapsulating LYC in WENPs led to a notable decrease in release rate and improved stability in terms of thermal, ultraviolet (UV), and storage conditions compared to free LYC. Simultaneously, WENPs/LYC exhibited a synergistic and significantly higher antioxidant activity with an EC50 value of 23.98 µg/mL in HepG2 cells compared to free LYC's 31.54 µg/mL. Treatment with WENPs/LYC led to a dose-dependent restoration of intracellular antioxidant enzyme activities (SOD, CAT, and GSH-Px) and inhibition of intracellular malondialdehyde (MDA) formation. Furthermore, transcriptome analysis indicated that enrichment in glutathione metabolism and peroxisome processes following WENPs/LYC addition. Quantitative real-time reverse transcription PCR (qRT-PCR) verified the expression levels of related genes involved in the antioxidant resistance pathway of WENPs/LYC on AAPH-induced oxidative stress. This study offers novel perspectives into the antioxidant resistance pathway of WENPs/LYC, holding significant potential in food industry.


Subject(s)
Antioxidants , Catechin , Juglans , Lycopene , Nanoparticles , Lycopene/pharmacology , Lycopene/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Juglans/chemistry , Humans , Nanoparticles/chemistry , Hep G2 Cells , Plant Proteins , Malondialdehyde/metabolism , Drug Stability , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects
4.
Sci Rep ; 14(1): 13625, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871787

ABSTRACT

Currently, the increasing pollution of the environment by heavy metals is observed, caused both by natural factors and those related to human activity. They pose a significant threat to human health and life. It is therefore important to find an effective way of protecting organisms from their adverse effects. One potential product showing a protective effect is green tea. It has been shown that EGCG, which is found in large amounts in green tea, has strong antioxidant properties and can therefore protect cells from the adverse effects of heavy metals. Therefore, the aim of the study was to investigate the effect of EGCG on cells exposed to Cd. In the study, CHO-K1 cells (Chinese hamster ovary cell line) were treated for 24 h with Cd (5 and 10 µM) and EGCG (0.5 and 1 µM) together or separately. Cell viability, ATP content, total ROS activity, mitochondrial membrane potential and apoptosis potential were determined. The results showed that, in tested concentrations, EGCG enhanced the negative effect of Cd. Further analyses are needed to determine the exact mechanism of action of EGCG due to the small number of publications on the subject and the differences in the results obtained in the research.


Subject(s)
Apoptosis , Cadmium , Catechin , Cell Survival , Cricetulus , Membrane Potential, Mitochondrial , Oxidative Stress , Reactive Oxygen Species , Catechin/analogs & derivatives , Catechin/pharmacology , Animals , CHO Cells , Apoptosis/drug effects , Oxidative Stress/drug effects , Cadmium/toxicity , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Antioxidants/pharmacology , Cricetinae , Adenosine Triphosphate/metabolism
5.
Food Chem ; 458: 140226, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943961

ABSTRACT

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.

6.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893466

ABSTRACT

Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.


Subject(s)
Biological Availability , Caseins , Catechin , Emulsions , Whey Proteins , Catechin/analogs & derivatives , Catechin/chemistry , Humans , Whey Proteins/chemistry , Caseins/chemistry , Caco-2 Cells , Emulsions/chemistry , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Drug Carriers/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Intestinal Absorption/drug effects
7.
Int J Biol Macromol ; 275(Pt 1): 133467, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945319

ABSTRACT

Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 µM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.

8.
Food Chem ; 458: 140241, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944926

ABSTRACT

Tea is widely consumed in both beverages and food. Epigallocatechin gallate (EGCG) is the most crucial active ingredient in tea. Currently, knowledges on transformation processes of EGCG during tea processing are lacking. Understanding the chemical reactions of EGCG and its products during tea processing is important for assessing the safety of tea-containing food. Here, we revealed the formation of persistent free radicals (PFRs) from EGCG under the influence of heating and light irradiation, which was substantiated with evidence. These PFRs exhibited stability for >30 min in simulated gastric fluid. Furthermore, we observed potential effects of these PFRs on DNA damage and cell cytotoxicity in vitro. By combining electron paramagnetic resonance spectrometer with Fourier transform ion cyclotron resonance mass spectrometry, we elucidated the pathways involved in free radical formation. These findings are expected to contribute to a comprehensive understanding of free radical chemistry in tea-containing food.

9.
J Reprod Immunol ; 164: 104263, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838579

ABSTRACT

BACKGROUND AND PURPOSE: Epigallocatechin gallate (EGCG), a natural antioxidant, has shown protective effect in many diseases. We explore the effect and potential regulatory mechanisms of EGCG in preeclampsia (PE)-like rats. METHODS AND MATERIALS: PE was mimicked in pregnant rats. EGCG was orally administered at a dosage of 25(Low, L) or 50 mg/kg (High, H) from gestational day (GD) 6-17. The blood pressure signatures, heart rates were monitored. The 24-h proteinuria and serum were analyzed. On GD 18, rats were sacrificed, and pups and placentas were weighed. Kidneys and placentas were analyzed using immunohistochemistry (IHC) and hematoxylin-eosin staining (H&E). Placentas were examined using western blot for sFlt1, eNOS, Nrf2, HO-1, SLC7A11. MDA, GSH, GPx and Fe2+ were measured. RESULTS: EGCG inhibits systolic blood pressure, BUN, CREA, ALT, AST, UA and proteinuria levels in PE-like rats. EGCG enhances the pup weight and crown-rump length and reduces the rate of fetus growth restriction in PE group. Endothelial dysfunction and infiltration of inflammatory cells were found in kidney cortex and placenta tissues in PE group and were inhibited by EGCG treatment. sFlt1 was activated in placentas in PE group and inhibited by EGCG while eNOS/Nrf2/HO-1 were inhibited in PE group and restored by EGCG. MDA and Fe concentrations were elevated in PE group and reduced by EGCG while the GSH level, SLC7A11 and the GPx activity were inhibited in PE group and restored by EGCG. CONCLUSION: EGCG alleviates inflammation, endothelial dysfunction and placental ferroptosis, improves pregnancy outcomes in PE-like rats via eNOS/Nrf2/HO-1.


Subject(s)
Catechin , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Pre-Eclampsia , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/administration & dosage , Pregnancy , Female , NF-E2-Related Factor 2/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/immunology , Pre-Eclampsia/pathology , Rats , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Disease Models, Animal , Placenta/drug effects , Placenta/pathology , Placenta/metabolism , Pregnancy Outcome , Humans , Inflammation/drug therapy , Inflammation/immunology , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism
10.
Food Chem X ; 22: 101512, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38883918

ABSTRACT

In this study, the moderation-excess interaction of epigallocatechin gallate (EGCG) and calcium ions (Ca2+) to the gelation performance of transparent egg white protein (EWP) gel (EWG) was explored. The oxidation of EGCG introduced a yellowish-brown EWG, whereas the weakening of Ca2+ ionic bonds caused a notable reduction in the hardness of EWG, from 120.67 g to 73.57 g. Achieving the optimal EGCG-to-Ca2+ ratio in EWG conferred enhanced water-holding capacity to 86.98%, while an excess of EGCG attributed to the creation of a three-dimensional structure within the void "walls". The elevated presence of EGCG influenced the ionic bonds and hydrophobic interactions, thereby presenting a moderate-excess relationship with sulfhydryl and disulfide bonds, ß-sheet, and α-helical structures. Notably, EGCG reduced the digestibility of EWG to 50.06%, while concurrently fostering the creation of smaller particle sizes. This study provides a scientific basis for the controllable preparation and quality regulation of transparent EWG.

11.
Clin Nutr ; 43(8): 1769-1780, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38936303

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS: A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS: ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS: The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER: ChiCTR2300076741; https://www.chictr.org.cn/.

12.
J Agric Food Chem ; 72(25): 14315-14325, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38847877

ABSTRACT

This study aimed to investigate the mitigation effect of epigallocatechin gallate (EGCG) on aging induced by 3-monochloropropane-1,2-diol (3-MCPD) in Caenorhabditis elegans, evaluate health indicators during the process, and reveal the underlying mechanism through transcriptomics and identification of mutants. The results showed that EGCG alleviated the declined fertility, shortened lifespan, reduced body size, weakened movement, increased reactive oxygen species and lipofuscin, and damaged antioxidative stress response and excessive heat shock proteins caused by 3-MCPD. Transcriptomics study indicated that treatment with 3-MCPD and EGCG altered gene expression, and gene mutants confirmed the involvement of insulin/IGF-1 signaling pathway in mediating the process that EGCG alleviated the aging toxicity induced by 3-MCPD. The study showed that EGCG alleviated the aging toxicity induced by 3-MCPD.


Subject(s)
Aging , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Catechin , Heat-Shock Proteins , Reproduction , alpha-Chlorohydrin , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Catechin/analogs & derivatives , Catechin/pharmacology , Reproduction/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Aging/drug effects , alpha-Chlorohydrin/toxicity , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Longevity/drug effects
13.
Cancer Cell Int ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840243

ABSTRACT

Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.

14.
Food Res Int ; 186: 114365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729700

ABSTRACT

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Subject(s)
Antioxidants , Catechin , Chenopodium quinoa , Emulsions , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Hydrolysates , Chenopodium quinoa/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Protein Hydrolysates/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Antioxidants/chemistry , Hydrogen Bonding , Plant Proteins/chemistry , Lipids/chemistry
15.
Heliyon ; 10(10): e30298, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778941

ABSTRACT

Olfactory receptors (ORs), the largest family of G protein-coupled receptors (GPCRs), are ectopically expressed in cancer cells and are involved in cellular physiological processes, but their function as anticancer targets is still potential. OR2AT4 is expressed in leukemia cells, influencing the proliferation and apoptosis, yet the limited number of known OR2AT4 agonists makes it challenging to fully generalize the receptor's function. In this study, we aimed to identify new ligands for OR2AT4 and to investigate their functions and mechanisms in K562 leukemia cells. After producing the recombinant OR2AT4 protein, immobilizing it on a surface plasmon resonance chip, and conducting screening to confirm binding activity using 258 chemicals, five novel OR2AT4 ligands were discovered. As a result of examining changes in intracellular calcium by five ligands in OR2AT4-expressing cells and K562 cells, (-)-epigallocatechin gallate (EGCG) was identified as an OR2AT4 agonist in both cells. EGCG reduced the viability of K562 cells and induced apoptosis in K562 cells. EGCG increased the expression of cleaved caspase 3/8 and had no effect on the expression of Bax and Bcl-2, indicating that it induced apoptosis through the extrinsic pathway. Additionally, the initiation of the extrinsic apoptosis pathway in EGCG-induced K562 cells was due to the activation of OR2AT4, using an OR2AT4 antagonist. This study highlights the potential of EGCG as an anti-cancer agent against leukemia and OR2AT4 as a target, making it a new anti-cancer drug.

16.
FEBS Lett ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789398

ABSTRACT

Nanotechnology offers promising avenues for enhancing drug delivery systems, particularly in HIV-1 treatment. This study investigates a nanoemulsified formulation combining epigallocatechin gallate (EGCG) with dolutegravir (DTG) for managing HIV-1 infection. The combinatorial interaction between EGCG and DTG was explored through cellular, enzymatic, and molecular studies. In vitro assays demonstrated the potential of a dual drug-loaded nanoemulsion, NE-DTG-EGCG, in inhibiting HIV-1 replication, with EGCG serving as a supplementary treatment containing DTG. In silico molecular interaction studies highlighted EGCG's multifaceted inhibitory potential against HIV-1 integrase and reverse transcriptase enzymes. Further investigations are needed to validate the formulation's efficacy across diverse contexts. Overall, by integrating nanotechnology into drug delivery systems, this study represents a significant advancement in managing HIV-1 infection.

17.
Biochem Biophys Rep ; 38: 101719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708422

ABSTRACT

Empirical studies have indicated that excessive tea consumption may potentially decrease folate levels within the human body. The main active component in green tea, epigallocatechin gallate (EGCG), significantly reduces the concentration of 5-methyltetrahydrofolate (5-MTHF) in both solution and serum. However, our findings also demonstrate that the pro-degradation effect of EGCG on 5-MTHF can be reversed by L-ascorbic acid (AA). Subsequent investigations suggest that EGCG could potentially expedite the degradation of 5-MTHF by generating hydrogen peroxide. In summary, excessive tea intake may lead to reduced folate levels in the bloodstream, yet timely supplementation of AA could potentially safeguard folate from degradation.

18.
Small ; : e2311967, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712482

ABSTRACT

Intracellular bacteria pose a great challenge to antimicrobial therapy due to various physiological barriers at both cellular and bacterial levels, which impede drug penetration and intracellular targeting, thereby fostering antibiotic resistance and yielding suboptimal treatment outcomes. Herein, a cascade-target bacterial-responsive drug delivery nanosystem, MM@SPE NPs, comprising a macrophage membrane (MM) shell and a core of SPE NPs. SPE NPs consist of phenylboronic acid-grafted dendritic mesoporous silica nanoparticles (SP NPs) encapsulated with epigallocatechin-3-gallate (EGCG), a non-antibiotic antibacterial component, via pH-sensitive boronic ester bonds are introduced. Upon administration, MM@SPE NPs actively home in on infected macrophages due to the homologous targeting properties of the MM shell, which is subsequently disrupted during cellular endocytosis. Within the cellular environment, SPE NPs expose and spontaneously accumulate around intracellular bacteria through their bacteria-targeting phenylboronic acid groups. The acidic bacterial microenvironment further triggers the breakage of boronic ester bonds between SP NPs and EGCG, allowing the bacterial-responsive release of EGCG for localized intracellular antibacterial effects. The efficacy of MM@SPE NPs in precisely eliminating intracellular bacteria is validated in two rat models of intracellular bacterial infections. This cascade-targeting responsive system offers new solutions for treating intracellular bacterial infections while minimizing the risk of drug resistance.

20.
Food Chem X ; 22: 101454, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38808163

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS) combined with multivariate analysis were used to characterize the nonvolatile compounds of broken green tea and explore the effect of isolated scenting on metabolic profile and taste quality of broken green tea in this research. A total of 236 nonvolatile compounds were identified and 13 compounds were believed to be the key characteristic taste compounds of scented broken green tea. Meanwhile, the optimal isolated scenting time of broken green tea was determined to be 10 h based on the sensory evaluation and PLS results. The contents and types of flavonoids, organic acids and catechins lead to the difference of taste quality at different scenting times. Overall, these findings provided a theoretical basis for scenting to improve the taste of broken green tea, and provide a new idea for improving the taste of broken green tea.

SELECTION OF CITATIONS
SEARCH DETAIL
...