Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Biol Ther ; 16(1): 137-48, 2015.
Article in English | MEDLINE | ID: mdl-25482934

ABSTRACT

The radioprotective potential of histamine on healthy tissue has been previously demonstrated. The aims of this work were to investigate the combinatorial effect of histamine or its receptor ligands and gamma radiation in vitro on the radiobiological response of 2 breast cancer cell lines (MDA-MB-231 and MCF-7), to explore the potential molecular mechanisms of the radiosensitizing action and to evaluate the histamine-induced radiosensitization in vivo in a triple negative breast cancer model. Results indicate that histamine significantly increased the radiosensitivity of MDA-MB-231 and MCF-7 cells. This effect was mimicked by the H1R agonist 2-(3-(trifluoromethyl)phenyl)histamine and the H4R agonists (Clobenpropit and VUF8430) in MDA-MB-231 and MCF-7 cells, respectively. Histamine and its agonists enhanced radiation-induced oxidative DNA damage, DNA double-strand breaks, apoptosis and senescence. These effects were associated with increased production of reactive oxygen species, which correlated with the inhibition of catalase, glutathione peroxidase and superoxide dismutase activities in MDA-MB-231 cells. Histamine was able also to potentiate in vivo the anti-tumoral effect of radiation, increasing the exponential tumor doubling time. We conclude that histamine increased radiation response of breast cancer cells, suggesting that it could be used as a potential adjuvant to enhance the efficacy of radiotherapy.


Subject(s)
Breast Neoplasms/metabolism , Histamine/metabolism , Radiation Tolerance , Radiation, Ionizing , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/radiation effects , DNA Damage/drug effects , DNA Damage/radiation effects , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Female , Histamine/pharmacology , Humans , MCF-7 Cells , Oxidation-Reduction , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Tumor Burden/drug effects , Tumor Burden/radiation effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL