Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chromatogr A ; 1731: 465174, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39111195

ABSTRACT

The present work describes a quick, simple, and efficient method based on the use of layered double hydroxides (LDH) coupled to dispersive solid phase micro-extraction (DSPME) to remove α-naphthol (α-NAP) and ß-naphthol (ß-NAP) isomers from water samples. Three different LDHs (MgAl-LDH, NiAl-LDH, and CoAl-LDH) were used to study how the interlayer anion and molar ratio affected the removal performance. The critical factors in the DSPME procedure (pH, LDH amount, contact time) were optimized by the univariate method under the optimal conditions: pH, 4-8; LDH amount, 5 mg; and contact time, 2.5 min. The method can be successfully applied in real sample waters, removing NAP isomers even in ultra-trace concentrations. The large volume sample stacking (LVSS-CE) technique provides limits of detections (LODs) of 5.52 µg/L and 6.36 µg/L for α-naphthol and ß-naphthol, respectively. The methodology's precision was evaluated on intra- and inter-day repeatability, with %RSD less than 10% in all cases. The MgAl/Cl--LDH selectivity was tested in the presence of phenol and bisphenol A, with a removal rate of >92.80%. The elution tests suggest that the LDH MgAl/Cl--LDH could be suitable for pre-concentration of α-naphthol and ß-naphthol in future works.


Subject(s)
Electrophoresis, Capillary , Limit of Detection , Naphthols , Solid Phase Microextraction , Water Pollutants, Chemical , Naphthols/chemistry , Naphthols/analysis , Naphthols/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Electrophoresis, Capillary/methods , Solid Phase Microextraction/methods , Hydroxides/chemistry , Isomerism , Reproducibility of Results , Hydrogen-Ion Concentration
2.
Biomedicines ; 12(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255318

ABSTRACT

Leishmaniasis remains a significant global health concern, with current treatments relying on outdated drugs associated with high toxicity, lengthy administration, elevated costs, and drug resistance. Consequently, the urgent need for safer and more effective therapeutic options in leishmaniasis treatment persists. Previous research has highlighted selenium compounds as promising candidates for innovative leishmaniasis therapy. In light of this, a library of 10 selenium-containing diverse compounds was designed and evaluated in this study. These compounds included selenium-substituted indole, coumarin, chromone, oxadiazole, imidazo[1,2-a]pyridine, Imidazo[2,1-b]thiazole, and oxazole, among others. These compounds were screened against Leishmania amazonensis promastigotes and intracellular amastigotes, and their cytotoxicity was assessed in peritoneal macrophages, NIH/3T3, and J774A.1 cells. Among the tested compounds, MRK-106 and MRK-108 displayed the highest potency against L. amazonensis promastigotes with reduced cytotoxicity. Notably, MRK-106 and MRK-108 exhibited IC50 values of 3.97 µM and 4.23 µM, respectively, and most of the tested compounds showed low cytotoxicity in host cells (CC50 > 200 µM). Also, compounds MRK-107 and MRK-113 showed activity against intracellular amastigotes (IC50 18.31 and 15.93 µM and SI 12.55 and 10.92, respectively). In conclusion, the identified selenium-containing compounds hold potential structures as antileishmanial drug candidates to be further explored in subsequent studies. These findings represent a significant step toward the development of safer and more effective therapies for leishmaniasis, addressing the pressing need for novel and improved treatments.

SELECTION OF CITATIONS
SEARCH DETAIL