Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Arch Biochem Biophys ; 689: 108472, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32590065

ABSTRACT

ß-Sitosterol (ßSito) is the most abundant phytosterol found in elevated concentrations in vegetable oils, nuts, seeds, cereals, fruits, and in many phytosterol-enriched foods. Although the benefits, there is a concern in terms of food quality and health due to the increasing consumption of phytosterols and the possible adverse side effects of their oxidation products, oxyphytosterols. ßSito has a similar structure to cholesterol, with an unsaturated double bond at C5-C6, which is susceptible to oxidation by reactive oxygen species like ozone, generating oxyphytosterols. In this work we propose a mechanism of formation of three oxyphytosterols 2-[(7aR)-5-[(1R,4S)-4-hydroxy-1-methyl-2-oxocyclohexyl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7- octahydroinden-4-yl] acetaldehyde (ßSec), (2-[(7aR)-5-[(2R,5S)-5-hydroxy-2-methyl-7-oxo-oxepan- 2-yl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7-octahydroinden-4- yl] acetaldehyde (ßLac) and 2-((7aR)-5-((1R,4S)-4-hydroxy-1-methyl-2- oxocyclohexyl)-1,7a-dimethyloctahydro-1Hinden-4-yl) acetic acid (ßCOOH) generated by ozonization of ßSito, through their synthesis and molecular characterization. The cytotoxic effect of ßSito and its main oxyphytosterol ßSec was evaluated and both reduced the HepG2 cell viability.


Subject(s)
Ozone/metabolism , Phytosterols/metabolism , Sitosterols/metabolism , Cell Survival/drug effects , Hep G2 Cells , Humans , Oxidation-Reduction , Phytosterols/chemistry , Phytosterols/toxicity , Reactive Oxygen Species/metabolism , Sitosterols/chemistry , Sitosterols/toxicity
2.
Arch Biochem Biophys, v. 689, 108472, jun. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3079

ABSTRACT

ß-Sitosterol (ßSito) is the most abundant phytosterol found in elevated concentrations in vegetable oils, nuts, seeds, cereals, fruits, and in many phytosterol-enriched foods. Although the benefits, there is a concern in terms of food quality and health due to the increasing consumption of phytosterols and the possible adverse side effects of their oxidation products, oxyphytosterols. ßSito has a similar structure to cholesterol, with an unsaturated double bond at C5–C6, which is susceptible to oxidation by reactive oxygen species like ozone, generating oxyphytosterols. In this work we propose a mechanism of formation of three oxyphytosterols 2-[(7aR)-5-[(1R,4S)-4-hydroxy-1-methyl-2-oxocyclohexyl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7- octahydroinden-4-yl]acetaldehyde (ßSec), (2-[(7aR)-5-[(2R,5S)-5-hydroxy-2-methyl-7-oxo-oxepan- 2-yl]-1,7a-dimethyl-1,2,3,3a,4,5,6,7-octahydroinden-4- yl] acetaldehyde (ßLac) and 2-((7aR)-5-((1R,4S)-4-hydroxy-1-methyl-2- oxocyclohexyl)-1,7a-dimethyloctahydro-1Hinden-4-yl) (ßCOOH) generated by ozonization of ßSito, through their synthesis and molecular characterization. The cytotoxic effect of ßSito and its main oxyphytosterol ßSec was evaluated and both reduced the HepG2 cell viability.

SELECTION OF CITATIONS
SEARCH DETAIL