ABSTRACT
What is the definition of Syndrome? Since the beginning of studies in genetics, certain terminologies have been created and used to define groups of diseases or alterations. With the advancement of knowledge and the emergence of new technologies, the use of basic concepts is being done in a mistaken or often confusing way. Because of this, revisiting and readjusting the old terms becomes imminent. Here, we explore these concepts and their use, through a literature compilation of an already well-defined genetic alteration (16q11.2 microduplication). We bring comparisons in clinical and molecular scope of the alteration itself and its diagnostic methods, to improve the report of cases, rescuing terminologies and their applicability nowadays.
Subject(s)
Chromosomes, Human, Pair 16 , Humans , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosome Duplication , Chromosomes, Human, Pair 16/genetics , SyndromeABSTRACT
The 22q11.2 deletion syndrome (DS) can have a significant impact on functionality. The purpose was to describe 22q11.2DS children with functioning from a biopsychosocial perspective, focusing on the impact of children's health condition from domains of the International Classification of Functioning, Disability, and Health (ICF). METHODS: A descriptive, cross-sectional case series study with seven 22q11.2DS children. A questionnaire with an ICF checklist for 22q11.2DS was completed using a structured interview. The Wechsler Abbreviated Scale of Intelligence (WASI) was used to determine the Intelligence Quotient (IQ). RESULTS: Seven participants from 7 to 12 years old, presented some level of IQ impairment. It was observed that 22q11.2DS children experience significant intellectual, cognitive, and speech impairments across ICF Body Function domains. Impairments related to nose and pharynx were found in only one patient. The most relevant categories considered limitations in the Activity and Participation components pertained to producing nonverbal messages, communication, handling stress, and social interaction. Family, health professionals, and acquaintances were perceived as facilitators in the component Environmental Factors. CONCLUSION: The sample has its functioning affected by aspects that go beyond impairments in body structure and function. The organization of information from the perspective of the ICF is a different approach that helps clinical reasoning.
ABSTRACT
BACKGROUND: The 22q11.2 Deletion Syndrome (22q11.2 DS) presents unique healthcare challenges for affected individuals, families, and healthcare systems. Despite its rarity, 22q11.2 DS is the most common microdeletion syndrome in humans, emphasizing the need to understand and address the distinctive healthcare requirements of those affected. This paper examines the multifaceted issue of health service access and caregivers' quality of life in the context of 22q11.2 DS in Brazil, a condition with diverse signs and symptoms requiring multidisciplinary care. This study employs a comprehensive approach to evaluate health service accessibility and the quality of life of caregivers of individuals with 22q11.2 DS. It utilizes a structured Survey and the WHOQOL-bref questionnaire for data collection. RESULTS: Individuals with 22q11.2 DS continue to receive incomplete clinical management after obtaining the diagnosis, even in the face of socioeconomic status that enabled an average age of diagnosis that precedes that found in sample groups that are more representative of the Brazilian population (mean of 3.2 years versus 10 years, respectively). In turn, caring for individuals with 22q11.2 DS who face difficulty accessing health services impacts the quality of life associated with the caregivers' environment of residence. CONCLUSIONS: Results obtained help bridge the research gap in understanding how caring for individuals with multisystem clinical conditions such as 22q11.2 DS and difficulties in accessing health are intertwined with aspects of quality of life in Brazil. This research paves the way for more inclusive healthcare policies and interventions to enhance the quality of life for families affected by this syndrome.
Subject(s)
DiGeorge Syndrome , Health Services Accessibility , Quality of Life , Humans , Brazil , Male , Female , Child , Adult , Adolescent , Caregivers/psychology , Child, Preschool , Surveys and Questionnaires , Young AdultABSTRACT
BACKGROUND: The 22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with highly variable phenotypic manifestations, even though most patients present the typical 3 Mb microdeletion, usually affecting the same ~ 106 genes. One of the genes affected by this deletion is DGCR8, which plays a crucial role in miRNA biogenesis. Therefore, the haploinsufficiency of DGCR8 due to this microdeletion can alter the modulation of the expression of several miRNAs involved in a range of biological processes. RESULTS: In this study, we used next-generation sequencing to evaluate the miRNAs profiles in the peripheral blood of 12 individuals with typical 22q11DS compared to 12 healthy matched controls. We used the DESeq2 package for differential gene expression analysis and the DIANA-miTED dataset to verify the expression of differentially expressed miRNAs in other tissues. We used miRWalk to predict the target genes of differentially expressed miRNAs. Here, we described two differentially expressed miRNAs in patients compared to controls: hsa-miR-1304-3p, located outside the 22q11.2 region, upregulated in patients, and hsa-miR-185-5p, located in the 22q11.2 region, which showed downregulation. Expression of miR-185-5p is observed in tissues frequently affected in patients with 22q11DS, and previous studies have reported its downregulation in individuals with 22q11DS. hsa-miR-1304-3p has low expression in blood and, thus, needs more validation, though using a sensitive technology allowed us to identify differences in expression between patients and controls. CONCLUSIONS: Thus, lower expression of miR-185-5p can be related to the 22q11.2 deletion and DGCR8 haploinsufficiency, leading to phenotypic consequences in 22q11.2DS patients, while higher expression of hsa-miR-1304-3p might be related to individual genomic variances due to the heterogeneous background of the Brazilian population.
Subject(s)
DiGeorge Syndrome , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/blood , Male , Female , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Child , Adolescent , Adult , Case-Control Studies , RNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Haploinsufficiency/genetics , Young AdultABSTRACT
The 22q11.2 deletion syndrome (22q11.2DS) is associated with a heterogeneous neurocognitive phenotype, which includes psychiatric disorders. However, few studies have investigated the influence of socioeconomic variables on intellectual variability. The aim of this study was to investigate the cognitive profile of 25 patients, aged 7 to 32 years, with a typical ≈3 Mb 22q11.2 deletion, considering intellectual, adaptive, and neuropsychological functioning. Univariate linear regression analysis explored the influence of socioeconomic variables on intellectual quotient (IQ) and global adaptive behavior. Associations with relevant clinical conditions such as seizures, recurrent infections, and heart diseases were also considered. Results showed IQ scores ranging from 42 to 104. Communication, executive functions, attention, and visuoconstructive skills were the most impaired in the sample. The study found effects of access to quality education, family socioeconomic status (SES), and caregiver education level on IQ. Conversely, age at diagnosis and language delay were associated with outcomes in adaptive behavior. This characterization may be useful for better understanding the influence of social-environmental factors on the development of patients with 22q11.2 deletion syndrome, as well as for intervention processes aimed at improving their quality of life.
Subject(s)
DiGeorge Syndrome , Humans , Male , Adolescent , Female , DiGeorge Syndrome/genetics , DiGeorge Syndrome/psychology , Child , Brazil/epidemiology , Adult , Young Adult , Neuropsychological Tests , Socioeconomic Factors , Intelligence , Quality of Life , Social ClassABSTRACT
Juvenile idiopathic arthritis is a heterogeneous group of diseases characterized by arthritis with poorly known causes, including monogenic disorders and multifactorial etiology. 22q11.2 proximal deletion syndrome is a multisystemic disease with over 180 manifestations already described. In this report, the authors describe a patient presenting with a short stature, neurodevelopmental delay, and dysmorphisms, who had an episode of polyarticular arthritis at the age of three years and eight months, resulting in severe joint limitations, and was later diagnosed with 22q11.2 deletion syndrome. Investigation through Whole Genome Sequencing revealed that he had no pathogenic or likely-pathogenic variants in both alleles of the MIF gene or in genes associated with monogenic arthritis (LACC1, LPIN2, MAFB, NFIL3, NOD2, PRG4, PRF1, STX11, TNFAIP3, TRHR, UNC13DI). However, the patient presented 41 risk polymorphisms for juvenile idiopathic arthritis. Thus, in the present case, arthritis seems coincidental to 22q11.2 deletion syndrome, probably caused by a multifactorial etiology. The association of the MIF gene in individuals previously described with juvenile idiopathic arthritis and 22q11.2 deletion seems unlikely since it is located in the distal and less-frequently deleted region of 22q11.2 deletion syndrome.
Subject(s)
Arthritis, Juvenile , DiGeorge Syndrome , Whole Genome Sequencing , Humans , Arthritis, Juvenile/genetics , Male , DiGeorge Syndrome/genetics , Intramolecular Oxidoreductases/genetics , Child, Preschool , Macrophage Migration-Inhibitory Factors/genetics , ChildABSTRACT
22q11.2 deletion syndrome (22q11.2DS) shows significant clinical heterogeneity. This study aimed to explore the association between clinical heterogeneity in 22q11.2DS and the parental origin of the deletion. The parental origin of the deletion was determined for 61 individuals with 22q11.2DS by genotyping DNA microsatellite markers and single-nucleotide polymorphisms (SNPs). Among the 61 individuals, 29 (47.5%) had a maternal origin of the deletion, and 32 (52.5%) a paternal origin. Comparison of the frequency of the main clinical features between individuals with deletions of maternal or paternal origin showed no statistically significant difference. However, Truncus arteriosus, pulmonary atresia, seizures, and scoliosis were only found in patients with deletions of maternal origin. Also, a slight difference in the frequency of other clinical features between groups of maternal or paternal origin was noted, including congenital heart disease, endocrinological alterations, and genitourinary abnormalities, all of them more common in patients with deletions of maternal origin. Although parental origin of the deletion does not seem to contribute to the phenotypic variability of most clinical signs observed in 22q11.2DS, these findings suggest that patients with deletions of maternal origin could have a more severe phenotype. Further studies with larger samples focusing on these specific features could corroborate these findings.
Subject(s)
DiGeorge Syndrome , Humans , Female , DiGeorge Syndrome/genetics , Male , Child , Adolescent , Polymorphism, Single Nucleotide , Phenotype , Child, Preschool , Adult , Chromosomes, Human, Pair 22/genetics , Infant , Young AdultABSTRACT
The condition known as 22q11.2 deletion syndrome (MIM #188400) is a rare disease with a highly variable clinical presentation including more than 180 features; specific guidelines for screening individuals have been used to support clinical suspicion before confirmatory tests by Brazil's Craniofacial Project. Of the 2568 patients listed in the Brazilian Database on Craniofacial Anomalies, 43 individuals negative for the 22q11.2 deletion syndrome were further investigated through whole-exome sequencing. Three patients (6.7%) presented with heterozygous pathogenic variants in the KMT2A gene, including a novel variant (c.6158+1del) and two that had been previously reported (c.173dup and c.3241C>T); reverse phenotyping concluded that all three patients presented features of Wiedemann-Steiner syndrome, such as neurodevelopmental disorders and dysmorphic facial features (n = 3), hyperactivity and anxiety (n = 2), thick eyebrows and lower-limb hypertrichosis (n = 2), congenital heart disease (n = 1), short stature (n = 1), and velopharyngeal insufficiency (n = 2). Overlapping features between 22q11.2 deletion syndrome and Wiedemann-Steiner syndrome comprised neuropsychiatric disorders and dysmorphic characteristics involving the eyes and nose region; velopharyngeal insufficiency was seen in two patients and is an unreported finding in WDSTS. Therefore, we suggest that both conditions should be included in each other's differential diagnoses.
Subject(s)
Abnormalities, Multiple , Contracture , DiGeorge Syndrome , Facies , Growth Disorders , Intellectual Disability , Microcephaly , Velopharyngeal Insufficiency , Humans , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , DiGeorge Syndrome/genetics , Intellectual Disability/diagnosis , Intellectual Disability/geneticsABSTRACT
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, it has been proposed that the clinical spectrum is not yet fully delimited, and additional uncommon or atypical clinical manifestations could be related to this entity. The present report describes a female carrying trisomy X but presenting atypical manifestations, including severe intellectual disability, short stature, thymus hypoplasia, and congenital hypothyroidism (CH). These clinical findings were initially attributed to trisomy X. However, chromosome microarray analysis (CMA) subsequently revealed that the patient also bears a heterozygous 304-kb deletion at 16p11.2. This pathogenic copy-number variant (CNV) encompasses 13 genes, including TUFM. Some authors recommend that when a phenotype differs from that described for an identified microdeletion, the presence of pathogenic variants in the non-deleted allele should be considered to assess for an autosomal recessive disorder; thus, we used a panel of 697 genes to rule out a pathogenic variant in the non-deleted TUFM allele. We discuss the possible phenotypic modifications that might be related to an additional CNV in individuals with sex chromosome aneuploidy (SCA), as seen in our patient. The presence of karyotype-demonstrated trisomy X and CMA-identified 16p11.2 deletion highlights the importance of always correlating a patient's clinical phenotype with the results of genetic studies. When the phenotype includes unusual manifestations and/or exhibits discrepancies with that described in the literature, as exemplified by our patient, a more extensive analysis should be undertaken to enable a correct diagnosis that will support proper management, genetic counseling, and medical follow-up.
Subject(s)
Sex Chromosome Aberrations , Trisomy , Humans , Female , Trisomy/diagnosis , Trisomy/genetics , Chromosome Deletion , Phenotype , KaryotypeABSTRACT
We report the first case of a child with 16p11.2 microduplication syndrome with increased fluid in the cisterna magna seen on magnetic resonance imaging (MRI). This finding may correspond to a Blake's Pouch Cyst (BPC) or a Mega Cisterna Magna (MCM), being impossible to differentiate through image examination. The molecular duplication was diagnosed using chromosomal microarray analysis with single nucleotide polymorphism (SNP). We review the clinical and neuroimaging features in published case reports in order to observe the findings described in the literature so far and present a skull three-dimensional model to contribute to a better understanding. Despite the variable expressivity of the syndrome being well known, there is no case described in the available literature that mentions the association of 16p11.2 microduplication and the presence of BPC or MCM seen in neuroimaging exams. This finding may represent an extension of the phenotype not yet reported or may present itself as a coincidence in a child with various malformations.
Subject(s)
Chromosome Structures , Head , Humans , Neuroimaging , Phenotype , Polymorphism, Single Nucleotide , SyndromeABSTRACT
Congenital heart defects (CHDs) are one of the most prevalent clinical features described in individuals diagnosed with 22q11.2 deletion syndrome (22q11.2DS). Therefore, cardiac malformations may be the main finding to refer for syndrome investigation, especially in individuals with a mild phenotype. Nowadays, different cytogenetic methodologies have emerged and are used routinely in research laboratories. Hence, choosing an efficient technology and providing an accurate interpretation of clinical findings is crucial for 22q11.2DS patient's diagnosis. This systematic review provides an update of the last 20 years of research on 22q11.2DS patients with CHD and the investigation process behind each diagnosis. A search was performed in PubMed, Embase, and LILACS using all entry terms to DiGeorge syndrome, CHDs, and cytogenetic analysis. After screening, 60 papers were eligible for review. We present a new insight of ventricular septal defect as a possible pivotal cardiac finding in individuals with 22q11.2DS. Also, we describe molecular technologies and cardiac evaluation as valuable tools in order to guide researchers in future investigations.
ABSTRACT
The clinical heterogeneity in 22q11.2 deletion syndrome (22q11.2DS) underlies complex genetic mechanisms including variants in other regions of the genome, known as genetic modifiers. Congenital heart disease (CHD) is one of the most relevant phenotypes in the syndrome and copy number variants (CNVs) outside the 22q11.2 region could play a role in its variable expressivity. Since those described loci account for a small proportion of the variability, the CNV analysis in new cohorts from different ancestry-based populations constitutes a valuable resource to identify a wider range of modifiers. We performed SNP-array in 117 Brazilian patients with 22q11.2DS, with and without CHD, and leveraged genome-wide CNV analysis. After quality control, we selected 50 CNVs in 38 patients for downstream analysis. CNVs' genetic content and implicated biological pathways were compared between patients with and without CHD. CNV-affected genes in patients with CHD were enriched for several functional terms related to ubiquitination, transcription factor binding sites and miRNA targets, highlighting the complexity of the phenotype's expressivity. Cardiac-related genes were identified in both groups of patients suggesting that increasing risk and protective mechanisms could be involved. These genes and enriched pathways could indicate new modifiers to the cardiac phenotype in 22q11.2DS patients.
Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , Humans , DiGeorge Syndrome/genetics , DNA Copy Number Variations/genetics , Brazil/epidemiology , Heart Defects, Congenital/genetics , PhenotypeABSTRACT
Introduction: Congenital heart disease (CHD) is the most common type of congenital defect reported to be one of the leading causes of mortality in the first year of life. Microdeletion and microduplication syndromes (MMS) are associated with cardiac malformations. Understanding which genetic factors are involved in these conditions directly impacts treatment decisions. We aimed to identify the occurrence of genetic alterations and their association with MMS in CHD pediatric patients evaluated in a reference service of Southern Brazil. Methods: Participants were recruited during 2010 in the intensive care unit of a pediatric hospital. MMs and regions of chromosome 22 were screened by SALSA MLPA Probemix P245 Microdeletion Syndromes-1A kit for detection of copy number variations (CNVs). Results: MMS were detected in 11 from 207 patients (5.3%). Heterozygous deletion in the 22q11.2 chromosome region was the most prevalent CNV (5 from 11 patients). Also, atypical RTDR1 deletion and 22q11.2 duplication were detected. MLPA was able to reveal microdeletions in SNRPN and NF1 genes in patients with a normal karyotype and FISH. Conclusion: Our study reports the prevalence and variability of genomic alterations associated with MMS in CHD pediatric patients. The results by MLPA are of great help in planning and specialized care.
ABSTRACT
BACKGROUND: The human genome presents variation at distinct levels, copy number variants (CNVs) are DNA segments of variable lengths that range from several base pairs to megabases and are present at a variable number of copies in human genomes. Common CNVs have no apparent influence on the phenotype; however, some rare CNVs have been associated with phenotypic traits, depending on their size and gene content. CNVs are detected by microarrays of different densities and are generally visualized, and their frequencies analysed using the HapMap as default reference population. Nevertheless, this default reference is inadequate when the samples analysed are from people from Mexico, since population with a Hispanic genetic background are minimally represented. In this work, we describe the variation in the frequencies of four common CNVs in Mexican-Mestizo individuals. RESULTS: In a cohort of 147 unrelated Mexican-Mestizo individuals, we found that the common CNVs 2p11.2 (99.6%), 8p11.22 (54.5%), 14q32.33 (100%), and 15q11.2 (71.1%) appeared with unexpectedly high frequencies when contrasted with the HapMap reference (ChAS). Yet, while when comparing to an ethnically related reference population, these differences were significantly reduced or even disappeared. CONCLUSION: The findings in this work contribute to (1) a better description of the CNVs characteristics of the Mexican Mestizo population and enhance the knowledge of genome variation in different ethnic groups. (2) emphasize the importance of contrasting CNVs identified in studied individuals against a reference group that-as best as possible-share the same ethnicity while keeping this relevant information in mind when conducting CNV studies at the population or clinical level.
ABSTRACT
Noonan syndrome (NS) is caused by pathogenic variants in genes involved in the RAS/MAPK pathway. On the other hand, 22q11.2 Deletion Syndrome (22q11.2DS) is caused by heterozygous microdeletion on chromosome 22q11.2. The clinical characteristics of both syndromes are expected to be relatively distinct, and, in fact, there is only one report of these syndromes occurring together, but on daily clinical practice and especially in early childhood phenotypes may overlap. In this study, we describe a patient with NS and 22q11.2DS features harboring a heterozygous 2.54 Mb deletion of chromosome 22q11.2 and a variant in LZTR1, c.1531G > A p.(Val511Met). In 1993, Wilson et al reported a patient with both 22q11.2DS and NS, proposing that probably more than one gene is deleted in the proband and that one of the deleted genes is responsible for Noonan's phenotype. In our patient, one of the deleted genes within the 22q11.2 region was the LZTR1 gene which was associated with NS in 2015. This case also highlights the importance of the long-term patients' follow-up to detect evolutionary changes that may appear in the phenotype and alerts clinicians of the co-occurrence of two syndromes that may manifest over time.
Subject(s)
DiGeorge Syndrome , Noonan Syndrome , Chromosome Deletion , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Humans , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Phenotype , Transcription Factors/geneticsABSTRACT
BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) is a rare disease with an important characteristic-clinical heterogeneity. The diversity of organs, regions, and systems of the body that can be affected requires periodic updating of health professionals so that they can recognize these clinical signs as belonging to 22q11.2DS. Updated professionals are equally important for the appropriate and timely clinical management of individuals with a positive diagnosis. In this context, this article aimed to map and analyze the access to healthcare for individuals with 22q11.2DS until the moment of diagnosis. RESULTS: We analyzed the clinical data of 111 individuals with 22q11.2DS registered in the Brazilian Database on Craniofacial Anomalies (BDCA) from 2008 to 2020. In this study, individuals were diagnosed at a median age of 9 years (mean = 9.7 years). Before the genetic investigation, they accessed 68.75% of the internationally recommended evaluations available at BDCA. Recurrent 22q11.2DS clinical manifestations such as delayed neuropsychomotor development, lip and/or palate defects, cardiac malformation and/or hematological/immunological alteration co-occurred in at least 72.06% of individuals. Cardiac malformation was the only clinical alteration that lowered the median diagnostic age, corresponding to 6.5 years of age with a cardiac malformation versus 11 years of age without one (p = 0.0006). CONCLUSIONS: In Brazil, 22q11.2 DS is under-recognized, and early diagnosis and management of affected individuals are still a distant reality. In this sense, 22q11.2 DS suspicion followed by the elimination of obstacles for its diagnosis confirmation is essential to increase life expectancy and improve the quality of life of these individuals in Brazil.
Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , Brazil , Child , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Heart Defects, Congenital/genetics , Humans , Quality of LifeABSTRACT
STUDY OBJECTIVES: Our aim is to evaluate the presence of REM sleep without atonia (RWA), the objective hallmark of REM sleep Behaviour Disorder (RBD), as prodromal marker of Parkinson's disease (PD), in an adult cohort of 22q11.2 deletion syndrome (22qDS). METHODS: Sleep quality was assessed by means of Pittsburgh quality scale index (PSQI), and RBD symptoms by means of RBD questionnaire-Hong-Kong (RBDQ-HK). Attended domiciliary video-Polysomnography (v-PSG) were performed in 26 adults (18-51 years, 14 females) 22qDS patients. Electromyogram during REM sleep was analyzed by means of SINBAR procedure at 3-second time resolution (miniepochs). RESULTS: An overall poor sleep quality was observed in the cohort and high RBDQ-HK score in 7 of the 26 patients, two additional patients with positive dream enactment reported by close relatives had low score of RBDQ-HK. Nevertheless, SINBAR RWA scores were lower than cut-off threshold for RWA (mean 5.5%, range 0-12.2%). TST and the percentage of light sleep (N1) were increased, with preserved proportions of N2 and N3. Participants reported poor quality of sleep (mean PSQI > 5), with prolonged sleep latency in the v-PSG. No subjects exhibit evident dream enactment episodes during recording sessions. CONCLUSIONS: RWA was absent in the studied cohort of 22qDS adult volunteers according to validated polysomnographic criteria. High RBDQ-HK scores do not correlate with v-PSG results among 22qDS individuals.
Subject(s)
DiGeorge Syndrome , REM Sleep Behavior Disorder , Adult , Cross-Sectional Studies , Female , Humans , Polysomnography , REM Sleep Behavior Disorder/diagnosis , Sleep, REMABSTRACT
BACKGROUND: DiGeorge syndrome (DG) is a genetic disorder associated with 22q11 deletion. It involves various phenotypes, including craniofacial abnormalities, congenital heart disorders, endocrine dysfunction, cognitive deficits, and psychiatric disorders. Cases commonly involve multiple anomalies. However, little is known about the condition of the oral cavity in this disorder, although palate fissure, abnormal mandible, malocclusion, and tooth hypoplasia have been identified. We aimed to determine the odontological features of patients with 22q11.2 microdeletion, in relation to gingival health and oral hygiene. We report the systemic manifestations of nine patients and results of oral evaluation of two patients. In the oral examination, oral hygiene and gingivitis were evaluated. CASE PRESENTATION: In terms of the systemic manifestations, we found high frequencies of low weight and height at birth. In terms of the oral manifestations, both examined patients presented malocclusion, enamel hypoplasia, dental crowding, anodontia, and healthy periodontium. CONCLUSION: Although DG has been documented to involve periodontium disease, the patients in this study exhibited more dental manifestations such as enamel defects, misalignment between the teeth and the two dental arches, anodontia, and dental crowding. As such, a multidisciplinary approach combining dentistry and healthcare is recommended in this case.
ABSTRACT
BACKGROUND: Congenital heart disease (CHD) is the most common congenital malformation, it is frequently found as an isolated defect, and the etiology is not completely understood. Although most of the cases have multifactorial causes, they can also be secondary to chromosomal abnormalities, monogenic diseases, microduplications or microdeletions, among others. Copy number variations (CNVs) at 22q11.2 are associated with a variety of symptoms including CHD, thymic aplasia, and developmental and behavioral manifestations. We tested CNVs in the 22q11.2 chromosomal region by MLPA in a cohort of Colombian patients with isolated CHD to establish the frequency of these CNVs in the cohort. METHODS: CNVs analysis of 22q11.2 by MLPA were performed in 32 patients with apparently isolate CHD during the neonatal period. Participants were enrolled from different hospitals in Bogotá, and they underwent a clinical assessment by a cardiologist and a clinical geneticist. RESULTS: CNVs in the 22q11.2 chromosomal region were found in 7 patients (21.9%). The typical deletion was found in 6 patients (18.75%) and atypical 1.5 Mb duplication was found in 1 patient (3.1%). CONCLUSIONS: CNVs in 22q11.2 is a common finding in patients presenting with isolated congenital cardiac disease, therefore these patients should be tested early despite the absence of other clinical manifestations. MLPA is a very useful molecular method and provides an accurate diagnosis.
ABSTRACT
INTRODUCCIÓN. La deleción 22q11.2 es una alteración cromosómica muy frecuente, en la cual un 60% de los afectados presenta patologías neuropsiquiátricas. Determinar si existe asociación entre el síndrome de deleción 22q11.2 (SD22q11.2) y patologías como la esquizofrenia (EQZ), ofrece una oportunidad para la intervención temprana, y seguimiento de personas con este síndrome. OBJETIVO. El objetivo del presente trabajo es determinar si existe mayor riesgo de EQZ en pacientes con síndrome deleción 22q11.2. MÉTODOS. Se realizó una búsqueda bibliográfica sistemática de publicaciones con fecha de 1990 a 2020. Las búsquedas se realizaron en PubMed y en la base de datos Cochrane. En total, se evaluaron 19 estudios, de los que se consideraron elegibles diez publicaciones para el análisis, lo que corresponde a 824 participantes. RESULTADOS. El riesgo de presentar EQZ en un individuo con SD22q11.2 es de 20-25%, en comparación al 1% de la población general. CONCLUSIONES. El riesgo para un individuo con SD22q11.2 de presentar EQZ se encuentra bien establecido. Considerar este riesgo podría ayudar a un adecuado seguimiento y una intervención temprana.
INTRODUCTION. 22q11.2 deletion syndrome is a very common chromosomal abnormality, in which 60% of those affected have neuropsychiatric disorders. Determining if there is an association between 22q11.2 deletion syndrome (22q11.2DS) and disorders such as schizophrenia (SCZ) offers an opportunity for early intervention and follow-up of people with this syndrome. OBJECTIVE. The objective of this study is to determine if there is a greater risk of SCZ in patients with 22q11.2 deletion syndrome. METHODS. A systematic review was performed for publications dated 1990 to 2020. The strategy was to search in PubMed and Cochrane databases for specific MeSH terms. In total, 19 studies were reviewed, of which 10 publications were eligible for analysis, corresponding to 824 participants. RESULTS. The risk of presenting SCZ in an individual with 22q11.2DS is 20-25%, compared to 1% in the general population.CONCLUSIONS. The risk of presenting SCZ in an individual with 22q11.2DS is well established. Considering this risk could help with adequate follow-up and early intervention.