Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732408

ABSTRACT

Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM-C) and stable mineral-associated organic matter (MAOM-C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest-meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053-2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM-C pool showed no clear patterns of change along forest-meadow ecotones, while the MAOM-C pool increased steadily from meadow to forest. Regardless of land use, the POM-C/MAOM-C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.

2.
Carbohydr Polym ; 330: 121813, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368084

ABSTRACT

2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO)-catalytic oxidation was applied to a water-insoluble α-(1 â†’ 3)-glucan in water at pH 10 and room temperature (∼24 °C), with solid NaOCl·5H2O as the primary oxidant. Oxidation with NaOCl at 15 mmol/g gave a water-soluble TEMPO-oxidized product at a mass recovery ratio of 97 %. The carboxy content of the TEMPO-oxidized product was 5.3 mmol/g, which corresponds to a degree of C6-oxidation (DO) of 93 %. A new water-soluble α-(1 â†’ 3)-polyglucuronic acid with a nearly homogeneous chemical structure was therefore quantitatively obtained. X-ray diffraction and solid-state 13C NMR spectroscopic analyses showed that the original α-(1 â†’ 3)-glucan and its TEMPO-oxidized product with a carboxy content of 5.3 mmol/g had crystalline structures, whereas the oxidized products with DOs of 50 % and 66 % had almost disordered structures. The carboxy groups in the oxidized products were regioselectively methyl esterified with trimethylsilyl diazomethane, and analyzed by using size-exclusion chromatography with multi-angle laser-light scattering and refractive index detections. The results show that the original α-(1 â†’ 3)-glucan and its oxidized products with DOs of 50 %, 66 %, and 93 % had weight-average degrees of polymerization of 671, 288, 54, and 45, respectively. Substantial depolymerization of the α-(1 â†’ 3)-glucan molecules therefore occurred during catalytic oxidation, irrespective of the oxidation pH.

3.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38220573

ABSTRACT

Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3ß signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3ß signaling pathway.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus , Fibroblast Growth Factors , Mice , Animals , Glutamine/metabolism , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases , Glutamic Acid/metabolism , Glucose/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Neurotransmitter Agents
4.
Magn Reson Chem ; 61(11): 595-605, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37649159

ABSTRACT

Hydroxypropyl methylcellulose acetyl succinate (HPMCAS) is widely used as a pharmaceutical excipient, making a detailed understanding of its tunable structure important for formulation design. Several recently reported peak assignments in the solid-state 13 C NMR spectrum of HPMCAS have been corrected here using peak integrals in quantitative spectra, spectral editing, empirical chemical-shift predictions based on solution NMR, and full spectrum simulation analogous to deconvolution. Unlike in cellulose, the strong peak at 84 ppm must be assigned to C2 and C3 methyl ethers, instead of regular C4 of cellulose. The proposed assignment of signals at <65 ppm to OCH sites, including C5 of cellulose, could not be confirmed. CH2 spectral editing showed two resolved OCH2 bands, a more intense one from O-CH2 ethers of C6 at >69 ppm and a smaller one from its esters and possibly residual CH2 -OH groups, near 63 ppm. The strong intensities of resolved signals of acetyl, succinoyl, and oxypropyl substituents indicated the substitution of >85% of the OH groups in HPMCAS. The side-group concentrations in three different grades of HPMCAS were quantified.

5.
Neurochem Res ; 48(8): 2580-2594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37069415

ABSTRACT

Chronic alcohol use disorder, a major risk factor for the development of neuropsychiatric disorders including addiction to other substances, is associated with several neuropathology including perturbed neuronal and glial activities in the brain. It affects carbon metabolism in specific brain regions, and perturbs neuro-metabolite homeostasis in neuronal and glial cells. Alcohol induced changes in the brain neurochemical profile accompany the negative emotional state associated with dysregulated reward and sensitized stress response to withdrawal. However, the underlying alterations in neuro-astroglial activities and neurochemical dysregulations in brain regions after chronic alcohol use are poorly understood. This study evaluates the impact of chronic ethanol use on the regional neuro-astroglial metabolic activity using 1H-[13C]-NMR spectroscopy in conjunction with infusion of [1,6-13C2]glucose and sodium [2-13C]acetate, respectively, after 48 h of abstinence. Besides establishing detailed 13C labeling of neuro-metabolites in a brain region-specific manner, our results show chronic ethanol induced-cognitive deficits along with a reduction in total glucose oxidation rates in the hippocampus and striatum. Furthermore, using [2-13C]acetate infusion, we showed an alcohol-induced increase in astroglial metabolic activity in the hippocampus and prefrontal cortex. Interestingly, increased astroglia activity in the hippocampus and prefrontal cortex was associated with a differential expression of monocarboxylic acid transporters that are regulating acetate uptake and metabolism in the brain.


Subject(s)
Astrocytes , Glucose , Animals , Mice , Acetates , Astrocytes/metabolism , Brain/metabolism , Ethanol/toxicity , Glucose/metabolism , Magnetic Resonance Spectroscopy
6.
J Colloid Interface Sci ; 636: 279-290, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36640549

ABSTRACT

HYPOTHESIS: Sodium oleate (NaOL) self-aggregates in water forming rodlike micelles with different length depending on NaOL concentration; when KCl is added wormlike micelles form, which entangle giving rise to a viscoelastic dispersion. It is expected that aggregates with different size and shape exhibit different internal and overall molecular motions and collective dynamics. EXPERIMENTS: Two low viscosity NaOL/water and two viscoelastic NaOL/KCl/water formulations with different NaOL concentration (0.23 and 0.43 M) were investigated by 1H fast field cycling NMR relaxometry over broad temperature and Larmor frequency ranges, after a first screening by 1H and 13C NMR spectroscopy at high frequency. FINDINGS: The analysis of the collected data indicated that fast conformational isomerization and rotation of NaOL about its long molecular axis and lateral diffusion of NaOL around the axis of the cylindrical aggregates are slightly affected by the aggregate shape and length. On the other hand, fluctuations of the local order director are quite different in the fluid and viscoelastic systems, reflecting the shape and size of the aggregates. Quantitative information was obtained on activation energy for fast internal and overall motions, correlation times and activation energy for lateral diffusion, and coherence length for collective order fluctuations.

7.
Angew Chem Int Ed Engl ; 62(5): e202214444, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36448534

ABSTRACT

Can commodity polymers are made to be healable just by blending with self-healable polymers? Here we report the first study on the fundamental aspect of this practically challenging issue. Poly(ether thiourea) (PTUEG3 ; Tg =27 °C) reported in 2018 is extraordinary in that it is mechanically robust but can self-heal even at 12 °C. In contrast, poly(octamethylene thiourea) (PTUC8 ; Tg =50 °C), an analogue of PTUEG3 , cannot heal below 92 °C. We found that their polymer blend self-healed in a temperature range above 32 °C even when its PTUEG3 content was only 20 mol %. Unlike PTUEG3 alone, this polymer blend, upon exposure to high humidity, barely plasticized, keeping its excellent mechanical properties due to the non-hygroscopic nature of the PTUC8 component. CP/MAS 13 C NMR analysis revealed that the polymer blend was nanophase-separated, which possibly accounts for why such a small amount of PTUEG3 provided the polymer blend with humidity-tolerant self-healable properties.

8.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500566

ABSTRACT

Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles.


Subject(s)
Silk , Water , Silk/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy/methods , Recombinant Proteins/chemistry , Biocompatible Materials/chemistry , Arthropod Proteins
9.
Heliyon ; 8(9): e10507, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36148282

ABSTRACT

Diorganotin carboxylates have received much interest in past decades due to their rich structural chemistry and wide range of applications in various fields. This review study provides an in-depth analysis of carbon NMR data of dimethyltin complexes. The absorptions shown by the carbonyl carbon, methyl groups attached to tin and the other carbons present in the complexes were presented in this study. The effects of nature and the number of substituents attached are also described in this report.

10.
J Proteome Res ; 21(4): 940-952, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35196455

ABSTRACT

For more than a decade, DNA and histone methylations have been the focus of extensive work, although their relationship with methyl group metabolism was overlooked. Recently, it has emerged that epigenetic methylations are influenced by methyl donor nutrient availability, cellular levels of S-adenosyl-methionine (SAM), and cytoplasmic methyltransferase activities. SAM-dependent methyltransferases methylate a wide range of targets, from small molecules to proteins and nucleic acids. However, few investigations of the global methylome of tumors have been performed. Here, untargeted NMR metabolomics of two mouse tumor models labeled with [13C-methyl]methionine were used to search for the NMR-visible set of cellular methyl acceptors denoted the global methylome. Tumor models were B16 melanoma cell cultures and B16 melanoma tumors, which may be considered as two stages of B16 tumor development. Based on 2D 1H-13C NMR spectra and orthogonal partial least squares discriminant analysis of spectra, our study revealed markedly different global methylomes for melanoma models. The methylome of B16 melanoma cell cultures was dominated by histone methylations, whereas that of B16 melanoma tumors was dominated by cytoplasmic small-molecule methylations. Overall, the technique gave access to the non-DNA methylome. Comparison of tumor models also exhibiting differential expression of aerobic glycolysis provided clues to a methyl metabolism shift during tumor progression.


Subject(s)
Melanoma, Experimental , Vitamin U , Animals , Epigenome , Melanoma, Experimental/pathology , Metabolomics/methods , Methionine , Mice
11.
Biol Fertil Soils ; 57(7): 881-894, 2021.
Article in English | MEDLINE | ID: mdl-34759437

ABSTRACT

To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management-and should be a focus of future research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00374-021-01580-2.

12.
J Agric Food Chem ; 69(41): 12148-12155, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34623140

ABSTRACT

It is generally considered that lignin is a three-dimensional amorphous polymer consisting of methoxylated phenylpropane structures. However, high yields of monomer structural units of lignin cannot be obtained through various ways, which inspired us to gain insights into the structures of lignin. Herein, enzymatic lignin (EL) was directly characterized by a solid-state 13C nuclear magnetic resonance spectrometer and Fourier transform infrared spectrometer and then subjected to ruthenium ion-catalyzed oxidation. According to the spectral characterization, it can be inferred that multi-ring aromatic clusters exist in EL because of the aromatic bridgehead carbon ratio of 0.136. Based on the results of ruthenium ion-catalyzed oxidation of the EL, it can be deduced that (1) double- and triple-aromatic ring clusters exist in the EL besides the traditional phenylpropane single-aromatic ring clusters, and (2) some aromatic rings with long-alkyl chain substituents exist in the EL, which is quite different from the traditional cognition of lignin. This investigation provides a new insight into the structure of EL.


Subject(s)
Lignin , Ruthenium , Catalysis , Lignin/metabolism , Magnetic Resonance Spectroscopy , Oxidation-Reduction
13.
Cells ; 10(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34571997

ABSTRACT

Acetylation is a post-translational modification that regulates the activity of enzymes fundamentally involved in cellular and mitochondrial bioenergetic metabolism. NAD+ dependent deacetylase sirtuin 3 (SIRT3) is localized to mitochondria where it plays a key role in regulating acetylation of TCA cycle enzymes and the mitochondrial respiratory complexes. Although the SIRT3 target proteins in mitochondria have been identified, the effect of SIRT3 activity on mitochondrial glucose metabolism in the brain remains elusive. The impact of abolished SIRT3 activity on glucose metabolism was determined in SIRT3 knockout (KO) and wild type (WT) mice injected with [1,6-13C]glucose using ex vivo 13C-NMR spectroscopy. The 1H-NMR spectra and amino acid analysis showed no differences in the concentration of lactate, glutamate, alanine, succinate, or aspartate between SIRT3 KO and WT mice. However, glutamine, total creatine (Cr), and GABA were lower in SIRT3 KO brain. Incorporation of label from [1,6-13C]glucose metabolism into lactate or alanine was not affected in SIRT3 KO brain. However, the incorporation of the label into all isotopomers of glutamate, glutamine, GABA and aspartate was lower in SIRT3 KO brain, reflecting decreased activity of mitochondrial and TCA cycle metabolism in both neurons and astrocytes. This is most likely due to hyperacetylation of mitochondrial enzymes due to suppressed SIRT3 activity in the brain of SIRT3 KO mice. Thus, the absence of Sirt3 results in impaired mitochondrial oxidative energy metabolism and neurotransmitter synthesis in the brain. Since the SIRT3 activity is NAD+ dependent, these results might parallel changes in glucose metabolism under pathologic reduction in mitochondrial NAD+ pools.


Subject(s)
Brain/metabolism , Carbohydrate Metabolism/physiology , Glucose/metabolism , Sirtuin 3/metabolism , Acetylation , Animals , Astrocytes/metabolism , Energy Metabolism/physiology , Female , Glutamic Acid/metabolism , Glutamine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Protein Processing, Post-Translational/physiology
14.
Antioxidants (Basel) ; 10(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356356

ABSTRACT

An application of solid 13C nuclear magnetic resonance (NMR) spectroscopy for the determination of macronutrients, total polyphenols content, antioxidant activity, N C S elements, and pH in commercially available bee pollens is reported herein. Solid-state 13C NMR spectra were recorded for homogenized pollen granules without chemical treatment or dissolution of samples. By combining spectral data with the results of reference analyses, partial least squares models were constructed and validated separately for each of the studied parameters. To characterize and compare the models' quality, the relative standard errors of prediction (RSEP) were calculated for calibration and validation sets. In the case of the analysis of protein, fat and reducing sugars, these errors were in the 1.8-2.5% range. Modeling the elemental composition of bee pollen on the basis of 13C NMR spectra resulted in RSEPcal/RSEPval values of 0.3/0.6% for the sum of NHCS elements, 0.3/0.4% for C, 1.8/1.9% for N, and 4.2/6.1% for S quantification. Analyses of total phenolics and ABTS antioxidant activity resulted in RSEP values in the 2.7-3.5% and 2.8-3.8% ranges, respectively, whereas they were 1.4-2.1% for pH. The obtained results demonstrate the usefulness of 13C solid-state NMR spectroscopy for direct determination of various important physiochemical parameters of bee pollen.

15.
Front Psychiatry ; 12: 637863, 2021.
Article in English | MEDLINE | ID: mdl-33986699

ABSTRACT

Major depressive disorder (MDD) is a leading cause of distress, disability, and suicides. As per the latest WHO report, MDD affects more than 260 million people worldwide. Despite decades of research, the underlying etiology of depression is not fully understood. Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the matured central nervous system. Imbalance in the levels of these neurotransmitters has been implicated in different neurological and psychiatric disorders including MDD. 1H nuclear magnetic resonance (NMR) spectroscopy is a powerful non-invasive method to study neurometabolites homeostasis in vivo. Additionally, 13C-NMR spectroscopy together with an intravenous administration of non-radioactive 13C-labeled glucose or acetate provides a measure of neural functions. In this review, we provide an overview of NMR-based measurements of glutamate and GABA homeostasis, neurometabolic activity, and neurotransmitter cycling in MDD. Finally, we highlight the impact of recent advancements in treatment strategies against a depressive disorder that target glutamate and GABA pathways in the brain.

16.
FASEB J ; 35(2): e21321, 2021 02.
Article in English | MEDLINE | ID: mdl-33543543

ABSTRACT

Healthy aging is associated with a decline in cognitive function, and is a major risk factor for many neurodegenerative diseases. Although, there are several evidence that brain mitochondrial function is altered with aging its significance at the cellular level is elusive. In this study, we have investigated mitochondrial TCA cycle and neurotransmitter cycle fluxes associated with glutamatergic, GABAergic neurons and astroglia in the cerebral cortex and hippocampus of young (6 months) and aged (24 months) C57BL6 mice by using 1 H-[13 C]-NMR spectroscopy together with timed infusion of 13 C-labeled glucose and acetate. The ratio VCyc /VTCA was determined from a steady-state [2-13 C]acetate experiment. Metabolic fluxes were obtained by fitting a three-compartment metabolic model to 13 C turnover of amino acids from glucose. Levels of glutamate, aspartate and taurine were reduced in the cerebral cortex, while glutamine and choline were elevated in the hippocampus of aged mice. Interestingly, the rate of acetate oxidation increased in the cerebral cortex, while the flux of mitochondrial TCA cycle of glutamatergic neurons decreased in the cerebral cortex (P < .0001) and hippocampus (P = .025) of aged mice. The glutamate-glutamine neurotransmitter cycle flux was reduced in the cerebral cortex (P < .0001). The GABAergic TCA cycle flux was reduced in the cerebral cortex (P = .0008), while GABA-glutamine neurotransmitter cycling flux was also reduced in the cerebral cortex (P = .011) and hippocampus (P = .042) of aged brain. In conclusion, the reduction in excitatory and inhibitory neurotransmitter activity of glutamatergic and GABAergic neurons in the cerebral cortex and hippocampus correlates qualitatively with declined cognitive function in aged mice.


Subject(s)
Brain/metabolism , Glutamic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , gamma-Aminobutyric Acid/metabolism , Aging/physiology , Animals , Blotting, Western , Energy Metabolism/physiology , Forelimb/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Rats
17.
J Neurochem ; 157(6): 1946-1962, 2021 06.
Article in English | MEDLINE | ID: mdl-33619759

ABSTRACT

There is little information on metabolism in developing cerebellum despite the known importance of this region in cognition and motor tasks. Ex vivo 1 H- and 13 C-NMR spectroscopy were used to determine metabolism during late postnatal development in cerebellum and cerebrum from 18-day-old rat pups after intraperitoneal (i.p.) injection of [1,6-13 C]glucose. The concentration of several metabolites in cerebellum was distinctly different than cerebrum; alanine, glutamine, creatine and myo-inositol were higher in cerebellum than cerebrum, the concentrations of lactate, GABA, aspartate and N-acetylaspartate (NAA) were lower in cerebellum than in cerebrum, and levels of glutamate, succinate, choline and taurine were similar in both brain regions. The incorporation of label from the metabolism of [1,6-13 C]glucose into most isotopomers of glutamate (GLU), glutamine (GLN), GABA and aspartate was lower in cerebellum than in cerebrum. Incorporation of label into the C2 position of lactate via the pyruvate recycling pathway was found in both brain regions. The ratio of newly synthesized GLN/GLU was significantly higher in cerebellum than in cerebrum indicating relatively active metabolism via glutamine synthetase in cerebellar astrocytes at postnatal day 18. This is the first study to determine metabolism in the cerebellum and cerebrum of male and female rat brain.


Subject(s)
Carbon Isotopes/metabolism , Cerebellum/metabolism , Cerebrum/metabolism , Glucose/metabolism , Animals , Animals, Newborn , Carbon Isotopes/analysis , Cerebellum/chemistry , Cerebrum/chemistry , Female , Glucose/analysis , Magnetic Resonance Spectroscopy/methods , Male , Pregnancy , Rats , Rats, Sprague-Dawley
18.
Sci Total Environ ; 739: 140063, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758952

ABSTRACT

Sugarcane burning has been widely practiced in Brazil and worldwide. In the long term, this farming practice can cause soil erosion, reduction in organic carbon (OC) and consequently, changes in the structure of soil organic matter (SOM). Such changes may be difficult to reverse. This study aimed to assess the medium- and long-term effects of sugarcane burning on SOM characteristics, both in terms of quantity and structural quality and evaluate the application of vinasse as a strategy to attenuate fire-induced changes in burned soil. The experiment was conducted in a 50-year-old sugarcane field on soils classed as Cambissolo Háplico (Inceptisol). Four plots were sampled: a) burning of sugarcane for harvest for 37 years (SCB37); b) renewal of the sugarcane field and burning for harvest for 3 years (SCB3); c) renewal of the sugarcane field without burning for harvest for 3 years (SCWB), and d) renewal of the sugarcane field and burning for harvest with the application of vinasse for 3 years (SCV). Chemical and physical characterization of SOM was performed by solid-state spectroscopy (UV-vis, ATR-FTIR e 13C NMR CP/MAS) and chemometric techniques. The results showed that sugarcane burning drastically impacts SOM content and its chemical structure, however, the application of vinasse preserves and restores the soil from the fire effects. Content of soil OC, particulate OC, mineral-associated OC, humic acid, humin and light fraction OM that were affected by fire, had an increase and recovery of contents by the vinasse application. Solid state spectroscopy showed that labile structures were lost in humic acids (HA) by fire and recalcitrant structures were preserved. The application of vinasse incorporated fragments of lipids and carbohydrates in HA structure. Burning sugar cane straw affects the integrity of soil organic matter but can be restored by applying vinasse.

19.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605210

ABSTRACT

Headed for developing minimalistic strategies to produce graphene@metal hybrids for electronics on a larger scale, we discovered that graphene oxide (GO)-metal oxide (MO) hybrids are formed spontaneously in water at room temperature in the presence of nothing else than graphene oxide itself and metal ions. Our observations show metal oxide nanoparticles decorating the surface of graphene oxide with particle diameter in the range of 10-40 nm after only 1 h of mixing. Their load ranged from 0.2% to 6.3% depending on the nature of the selected metal. To show the generality of the reactivity of GO with different ions in standard conditions, we prepared common hybrids with GO and tin, iron, zinc, aluminum and magnesium. By means of carbon-13 solid-state nuclear magnetic resonance using magic angle spinning, we have found that graphene oxide is also moderately reduced at the same time. Our method is powerful and unique because it avoids the use of chemicals and heat to promote the coprecipitation and the reduction of GO. This advantage allows synthesizing GO@MO hybrids with higher structural integrity and purity with a tunable level of oxidization, in a faster and greener way.

20.
Huan Jing Ke Xue ; 41(6): 2842-2851, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608801

ABSTRACT

Development and the dynamics of stable aggregates in many soils are known to be closely related to the cycling as well as accumulation of soil organic carbon (SOC). This study explored the aggregation processes and distributions of soil organic carbon in soils developed from limestone (L), quaternary red earth (Q), granite (G), basalt (B), and tertiary red sandstone (T) subtropical China related to the addition of maize residues during 7 days and 184 days of incubation. The soils were sieved to<0.25 mm before incubation. We aimed to clarify the mechanisms underlying SOC mineralization across soils from the perspective of soil aggregate protection. Fractionation of the water stable aggregates showed that addition of maize straw promoted the formation of>2 mm and 2-1 mm aggregates, while only 1.0-0.5, 0.5-0.25 and <0.25 mm aggregates were detected in the absence maize straw. The proportion of macroaggregates as well as their stability was always higher in L, Q, and B developed soils than those in G and T developed soils. In amended soils, the accumulation of total SOC was much obvious in L, Q, and B developed soils than those in G and T developed soils, and these increases were mainly contributed by the >0.25 mm macroaggregate-associated SOC. This result indicated that>0.25 mm macroaggregates were important spots for SOC sequestration. Furthermore, the proportions of>0.25 mm macroaggregate-associated SOC were also significantly (P<0.05) higher in L, Q, and B developed soils than those in G and T developed soils, and the free light organic carbon (fLOC) followed an inverse parent material pattern as>0.25 mm macroaggregate-associated SOC. Results also demonstrated that ratios of accumulative mineralized CO2-C to total soil organic carbon in L, Q, and B soils were significantly (P<0.05) lower than those in G and T soils. The correlation analysis further suggested that ratios of cumulative respired CO2-C to total soil organic carbon were significantly and positively correlated (P<0.01) with the proportion of fLOC, but inversely correlated (P<0.01) with the proportion of>0.25 mm macroaggregate-associated SOC. By applying 13C-NMR to characterize the inherent chemical composition of soil organic carbon fractions, we noted that fLOC was more deeply decomposed than intra-aggregate light organic carbon (intra-aggregate LOC), and both the fractions were advanced decomposed in G and T developed soils, verifying enhanced protection of added maize residues inside soil aggregates. The findings of the research suggested that the parent material exerts a significant influence on SOC mineralization by controlling the formation of aggregates and location of SOC in the hierarchical structure of the soil aggregate system. We demonstrated that enhanced physical protection of SOC by forming more stable macroaggregates contributes to carbon accumulation in limestone, quaternary red earth, and basalt developed soils treated with organic amendments.

SELECTION OF CITATIONS
SEARCH DETAIL