Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.611
Filter
1.
Microbiol Spectr ; : e0012524, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980015

ABSTRACT

Semen is one of the common body fluids in sexual crime cases. The current methods of semen identification have certain limitations, so it is necessary to search for other methods. In addition, there are few reports of microbiome changes in body fluids under simulated crime scenes. It is essential to further reveal the changes in semen microbiomes after exposure to various simulated crime scenes. Semen samples from eight volunteers were exposed in closed plastic bags, soil, indoor, cotton, polyester, and wool fabrics. A total of 68 samples (before and after exposure) were collected, detected by 16S rDNA sequencing, and analyzed for the microbiome signature. Finally, a random forest model was constructed for body fluid identification. After exposure, the relative abundance of Pseudomonas and Rhodococcus changed dramatically in almost all groups. In addition, the treatment with the closed plastic bags or soil groups had a greater impact on the semen microbiome. According to the Shannon indices, the alpha diversity of the closed plastic bags and soil groups was much lower than that of the other groups. Attention should be given to the above two scenes in practical work of forensic medicine. In this study, the accuracy of semen recognition was 100%. The exposed semen can still be correctly identified as semen based on its microbiota characteristics. In summary, semen microbiomes exposed to simulated crime scenes still have good application potential for body fluid identification. IMPORTANCE: In this study, the microbiome changes of semen exposed to different environments were observed, and the exposed semen microbiome still has a good application potential in body fluid identification.

2.
Article in English | MEDLINE | ID: mdl-38966934

ABSTRACT

Despite the diversity of microbiota in birds is similar to that of other animals, there is a lack of research on the gut microbial diversity of nondomesticated bird species. This study aims to address this gap in knowledge by analyzing the bacterial communities present in the gut of two important game bird species, the Ring-necked pheasant (Phasianus colchicus) and the Green pheasant (Phasianus versicolor) to understand the gut microbial diversity of these species. The gut microbiome of 10 individual pheasants from two different species was studied using pooled fecal samples. We used 16S rRNA gene sequencing on the Ion S5 XL System next-generation sequencing with Mothur and SILVA Database for taxonomic division. An average of 141 different operational taxonomic units were detected in the gut microbiome. Analysis of microbial classification revealed the presence of 191 genera belonging to 12 different phyla in both pheasants. Alpha diversity indices revealed that P. colchicus exhibited most prevalence firmicutes with bacillus species microbial community than P. versicolor. Alpha diversity indices indicated that P. colchicus had a more diverse community and P. versicolor had a greater diversity of evolutionary lineages, while both species had similar levels of species richness and sample inclusiveness. These findings may have implications for the health and well-being of pheasants, serving as a reference for their bacterial diversity. Additionally, they provide a baseline for future research and conservation efforts aimed at improving the health and well-being of these and possibly other avian species.

3.
Sci Rep ; 14(1): 15508, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969657

ABSTRACT

The gut microbiome of wild animals is subject to various environmental influences, including those associated with human-induced alterations to the environment. We investigated how the gut microbiota of a synurbic rodent species, the striped field mouse (Apodemus agrarius), change in cities of varying sizes, seeking the urban microbiota signature for this species. Fecal samples for analysis were collected from animals living in non-urbanized areas and green spaces of different-sized cities (Poland). Metagenomic 16S rRNA gene sequencing and further bioinformatics analyses were conducted. Significant differences in the composition of gut microbiomes among the studied populations were found. However, the observed changes were dependent on local habitat conditions, without strong evidence of a correlation with the size of the urbanized area. The results suggest that ecological detachment from a more natural, non-urban environment does not automatically lead to the development of an "urban microbiome" model in the studied rodent. The exposure to the natural environment in green spaces may serve as a catalyst for microbiome transformations, providing a previously underestimated contribution to the maintenance of native gut microbial communities in urban mammals.


Subject(s)
Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Cities , Murinae/microbiology , Ecosystem , Mammals/microbiology , Bacteria/classification , Bacteria/genetics
4.
BMC Vet Res ; 20(1): 297, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971767

ABSTRACT

BACKGROUND: Listeriosis is a global health threat to both animals and humans, especially in developing countries. This study was designed to isolate Listeria monocytogenes from faeces; environmental samples; and cow, sheep and goat milk, as well as human stool, to study its molecular characteristics and antibiotic sensitivity in the New Valley and Beheira Governorates, Egypt. The isolation and identification of L. monocytogenes were carried out using traditional culture and biochemical methods, followed by antibiography, genus confirmation of some isolates and detection and sequencing of InlB genes via PCR. RESULTS: Out of 2097 examined samples, the prevalence of L. monocytogenes was 13.4% in animals; the prevalence was 9.2%, 2.4%, 25.4%, 4%, 42.4%, and 6.4% in cattle faeces, cattle milk, sheep faeces, sheep milk, goat faeces, and goat milk, respectively. However, the prevalence of L. monocytogenes was 8.3% in human samples. Both animal and human isolates showed 100% resistance to trimethoprim-sulfamethoxazole, and the isolates showed the highest sensitivity to flumequine (100%), amikacin (99.2%), gentamicin (97.6%), and levofloxacin (94.6%). Multidrug resistance (MDR) was detected in 86.9% of the tested isolates. The 16 S rRNA and inlB genes were detected in 100% of the randomly selected L. monocytogenes isolates. Phylogenetic analysis of three isolates based on the inlB gene showed 100% identity between faecal, milk and human stool isolates. CONCLUSIONS: Faeces and milk are major sources of listeriosis, and the high degree of genetic similarity between animal and human isolates suggests the possibility of zoonotic circulation. The high prevalence of MDR L. monocytogenes in both animal and human samples could negatively impact the success of prevention and treatments for animal and human diseases, thereby imposing serious risks to public health.


Subject(s)
Anti-Bacterial Agents , Feces , Goats , Listeria monocytogenes , Listeriosis , Milk , Animals , Egypt/epidemiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Humans , Prevalence , Sheep , Anti-Bacterial Agents/pharmacology , Cattle , Feces/microbiology , Listeriosis/veterinary , Listeriosis/epidemiology , Listeriosis/microbiology , Milk/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
5.
Front Psychiatry ; 15: 1335554, 2024.
Article in English | MEDLINE | ID: mdl-38957739

ABSTRACT

Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.

7.
Article in English | MEDLINE | ID: mdl-39023139

ABSTRACT

A bacterial strain designated PU5-4T was isolated from the mealworm (the larvae of Tenebrio molitor) intestines. It was identified to be Gram-stain-negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Strain PU5-4T was observed to grow at 10-40 °C, at pH 7.0-10.0, and in the presence of 0-3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PU5-4T should be assigned to the genus Sphingobacterium. The 16S rRNA gene sequence similarity analysis showed that strain PU5-4T was closely related to the type strains of Sphingobacterium lactis DSM 22361T (98.49 %), Sphingobacterium endophyticum NYYP31T (98.11 %), Sphingobacterium soli NCCP 698T (97.69 %) and Sphingobacterium olei HAL-9T (95.73 %). The predominant isoprenoid quinone is MK-7. The major fatty acids were identified as iso-C15 : 0, iso-C17 : 03-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 9 (iso-C17 : 0 ω9c). The polar lipids are phosphatidylethanolamine, one unidentified phospholipid, and six unidentified lipids. The genomic DNA G+C content of strain PU5-4T is 40.24 mol%. The average nucleotide identity of strain PU5-4T exhibited respective values of 73.88, 73.37, 73.36 and 70.84 % comparing to the type strains of S. lactis DSM 22361T, S. soli NCCP 698T, S. endophyticum NYYP31T and S. olei HAL-9T, which are below the cut-off level (95-96 %) for species delineation. Based on the above results, strain PU5-4T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium temoinsis sp. nov. is proposed. The type strain is PU5-4T (=CGMCC 1.61908T=JCM 36663T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Intestines , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Sphingobacterium , Tenebrio , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , DNA, Bacterial/genetics , Sphingobacterium/genetics , Sphingobacterium/isolation & purification , Sphingobacterium/classification , Animals , Intestines/microbiology , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Tenebrio/microbiology , Phosphatidylethanolamines , Larva/microbiology , Phospholipids/analysis
8.
Article in English | MEDLINE | ID: mdl-39008351

ABSTRACT

Two pink-pigmented bacteria, designated strains NEAU-140T and NEAU-KT, were isolated from field soil collected from Linyi, Shandong Province, PR China. Both isolates were aerobic, Gram-stain-negative, rod-shaped, and facultatively methylotrophic. 16S rRNA gene sequences analysis showed that these two strains belong to the genus Methylobacterium. Strain NEAU-140T exhibited high 16S rRNA gene sequence similarities to Methylobacterium radiotolerans NBRC 15690T (97.43 %) and Methylobacterium phyllostachyos NBRC 105206T (97.36 %). Strain NEAU-KT exhibited high 16S rRNA gene sequence similarities to M. phyllostachyos NBRC 105206T (99.00 %) and Methylobacterium longum DSM 23933T (98.72 %). A phylogenetic tree based on 16S rRNA gene sequences showed that strain NEAU-140T formed a clade with Methylobacterium aerolatum (95.94 %), Methylobacterium persicinum (95.66 %) and Methylobacterium komagatae (96.87 %), and strain NEAU-KT formed a cluster with M. phyllostachyos and M. longum. The predominant fatty acid in both strains was C18 : 1 ω7c. Both strains contained ubiquinone Q-10 as the only respiratory quinone. The polar lipid profiles of both strains contained diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. Whole-genome phylogeny showed that strains NEAU-140T and NEAU-KT formed a phyletic line with M. aerolatum, M. persicinum, Methylobacterium radiotolerans, Methylobacterium fujisawaense, Methylobacterium oryzae, Methylobacterium tardum, M. longum and M. phyllostachyos. The orthologous average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain NEAU-140T and its closely related strains were lower than 82.62 and 25.90  %, respectively. The ANI and dDDH values between strain NEAU-KT and its closely related strains were lower than 86.29 and 31.7 %, respectively. The genomic DNA G+C contents were 71.63 mol% for strain NEAU-140T and 69.08 mol% for strain NEAU-KT. On the basis of their phenotypic and phylogenetic distinctiveness and the results of dDDH and ANI hybridization, these two isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium amylolyticum sp. nov. (type strain NEAU-140T=MCCC 1K08801T=DSM 110568T) and Methylobacterium ligniniphilum sp. nov. (type strain NEAU-KT=MCCC 1K08800T=DSM 110567T) are proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Methylobacterium , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Methylobacterium/genetics , Methylobacterium/classification , Methylobacterium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/analysis , China , Ubiquinone , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis
9.
Antonie Van Leeuwenhoek ; 117(1): 102, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012584

ABSTRACT

This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.


Subject(s)
Chickens , Polymerase Chain Reaction , Poultry Diseases , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Animals , Chickens/microbiology , Polymerase Chain Reaction/methods , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/genetics , Sequence Analysis, DNA , Phylogeny
10.
Water Sci Technol ; 90(1): 1-17, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007303

ABSTRACT

Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.


Subject(s)
Bacteria , Biofouling , Halogenation , Nuclear Power Plants , RNA, Ribosomal, 16S , Water Purification , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Water Purification/methods , Seawater/microbiology , Chlorine/chemistry
11.
Bull Exp Biol Med ; 177(1): 140-146, 2024 May.
Article in English | MEDLINE | ID: mdl-38960962

ABSTRACT

The dynamics of lung microbiota in tuberculosis remains poorly understood. Sequencing of variable regions of the 16S rRNA gene from surgically excised tuberculosis foci and biopsy specimens of normal lung tissue allowed characterization of the diversity and predictive potential of bacterial communities. Taxonomic diversity indices attested to differences in the structure of microbial communities between "healthy" lungs and tuberculomas. The microbial composition of "healthy" lungs varied in taxonomic diversity and was presented by both gram-positive and gram-negative bacteria with sufficiently similar metabolic potential. The microbiota of the examined tuberculomas consisted of Mycobacterium tuberculosis in 99.9% of cases. A significant part of the metabolic pathways predicted by PICRUSt2 included cholesterol catabolism, sulfate assimilation, and various pathways for the biosynthesis of cell wall components.


Subject(s)
Lung , Mycobacterium tuberculosis , RNA, Ribosomal, 16S , Tuberculoma , Humans , RNA, Ribosomal, 16S/genetics , Mycobacterium tuberculosis/genetics , Tuberculoma/microbiology , Tuberculoma/pathology , Tuberculoma/genetics , Lung/microbiology , Lung/pathology , Lung/metabolism , Microbiota/genetics , Microbiota/physiology , Male , Adult , Tuberculosis, Pulmonary/microbiology , Female , Middle Aged , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Gram-Positive Bacteria/classification
12.
Article in English | MEDLINE | ID: mdl-39003214

ABSTRACT

It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.

13.
Neurogastroenterol Motil ; : e14874, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031023

ABSTRACT

BACKGROUND: The aim of this study was to investigate the frequency dependence of electroacupuncture (EA) in alleviating chronic visceral pain in patients with irritable bowel syndrome (IBS) and the differences in the gut microbiota and metabolites as potential mechanisms to explain frequency dependence. METHODS: A visceral hyperalgesia model was established by colorectal instillation of 2,4,6-trinitrobenzene sulfonic acid in rats, and EA treatment at 2/10 Hz, 2/50 Hz and 2/100 Hz was applied at ST25. Visceral sensation was quantified by the abdominal withdrawal reflex score and the area under the curve of the rectus abdominis electromyogram in response to colorectal distension. Ultrastructural morphological damage of colonic tissue of the rats was examined by transmission electron microscopy. 16S rRNA gene sequencing and 1H-nuclear magnetic resonance spectroscopy were applied to study the differences in the gut microbiota and to perform metabonomic profiling of the colonic tissue. KEY RESULTS: EA at ST25 at different frequencies attenuated chronic visceral pain, ultrastructural morphological damage to colonic tissue and disruption of the gut microbiota in IBS rats. The frequency of 2/100 Hz has more regulatory pathways than 2/10 Hz and 2/50 Hz. In addition, IBS rats exhibited colonic metabolic disorders, and pantothenate was significantly upregulated after EA treatment at different frequencies. Very low-density lipoprotein and 2-hydroxybutyrate were significantly increased in the 2/10 Hz group, while low density lipoprotein, very low-density lipoprotein, 2-hydroxybutyrate, methylmalonate and alpha-hydroxyisobutyric acid were significantly increased in the 2/100 Hz group. CONCLUSIONS AND INFERENCES: EA at ST25 at different frequencies attenuated chronic visceral pain through different gut microbiota and metabolic pathways.

14.
Data Brief ; 54: 110273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962198

ABSTRACT

Chillies are members of the genus Capsicum L. (family Solanaceae). They are native to Central and South America and consist of approximately 35 species [1,2]. Among these, five species (C. annuum L., C. baccatum L., C. chinense Jacq., C. frutescens L., and C. pubescens Ruiz & Pav.) have been domesticated and are mainly cultivated for consumption as vegetables and spices. Of the domesticated chillies, C. annuum is commercially cultivated worldwide, while C. frutescens and C. chinense are mainly cultivated in American, Asian, and African countries [3]. We compared the diversity of microbiota in various compartments of farm-cultivated (FC) and home-planted (HP) chilli plants (Capsicum frutescens). Targeted 16S rRNA gene (V5-V6 region) was sequenced using the Illumina NovaSeq 6000 platform. Proteobacteria, Actinobacteriota, Acidobacteriota, Gemmatimonadota, Bacteroidota, and Firmicutes were present in all compartments of both the FC and HP plants. Proteobacteria (or Pseudomonadota) was the predominant phylum in all the compartments of both HP and FC plants, while Actinobacteriota (or Actinomycetota) was the second most abundant phylum. Most plant compartments (leaves, fruits and roots) exhibited a higher relative abundance of Proteobacteria compared to the soil samples. With few exceptions, the soil compartments (bulk and rhizospheric soils) displayed a higher relative abundance of the phyla Myxococcota, Acidobacteriota, Gemmatimonadota, Bacteroidota, Nitrospirota, Verrucomicrobiota, and Firmicutes than the plant compartments. Diversity indices revealed that the bacterial community in chili plants clustered based on both compartment and cultivation area.

15.
Front Endocrinol (Lausanne) ; 15: 1344152, 2024.
Article in English | MEDLINE | ID: mdl-38948515

ABSTRACT

Background: Analyzing bacterial microbiomes consistently using next-generation sequencing (NGS) is challenging due to the diversity of synthetic platforms for 16S rRNA genes and their analytical pipelines. This study compares the efficacy of full-length (V1-V9 hypervariable regions) and partial-length (V3-V4 hypervariable regions) sequencing of synthetic 16S rRNA genes from human gut microbiomes, with a focus on childhood obesity. Methods: In this observational and comparative study, we explored the differences between these two sequencing methods in taxonomic categorization and weight status prediction among twelve children with obstructive sleep apnea. Results: The full-length NGS method by Pacbio® identified 118 genera and 248 species in the V1-V9 regions, all with a 0% unclassified rate. In contrast, the partial-length NGS method by Illumina® detected 142 genera (with a 39% unclassified rate) and 6 species (with a 99% unclassified rate) in the V3-V4 regions. These approaches showed marked differences in gut microbiome composition and functional predictions. The full-length method distinguished between obese and non-obese children using the Firmicutes/Bacteroidetes ratio, a known obesity marker (p = 0.046), whereas the partial-length method was less conclusive (p = 0.075). Additionally, out of 73 metabolic pathways identified through full-length sequencing, 35 (48%) were associated with level 1 metabolism, compared to 28 of 61 pathways (46%) identified through the partial-length method. The full-length NGS also highlighted complex associations between body mass index z-score, three bacterial species (Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and Streptococcus parasanguinis ATCC 15912), and 17 metabolic pathways. Both sequencing techniques revealed relationships between gut microbiota composition and OSA-related parameters, with full-length sequencing offering more comprehensive insights into associated metabolic pathways than the V3-V4 technique. Conclusion: These findings highlight disparities in NGS-based assessments, emphasizing the value of full-length NGS with amplicon sequence variant analysis for clinical gut microbiome research. They underscore the importance of considering methodological differences in future meta-analyses.


Subject(s)
Gastrointestinal Microbiome , Pediatric Obesity , RNA, Ribosomal, 16S , Sleep Apnea, Obstructive , Humans , Gastrointestinal Microbiome/genetics , Child , Male , RNA, Ribosomal, 16S/genetics , Female , Sleep Apnea, Obstructive/microbiology , Sleep Apnea, Obstructive/genetics , Pediatric Obesity/microbiology , Pediatric Obesity/genetics , High-Throughput Nucleotide Sequencing/methods , Child, Preschool , Body Weight , Adolescent
16.
Biol Futur ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990490

ABSTRACT

Earth harbors unique environments where only microorganisms adapted to extreme conditions, known as extremophiles, can survive. This study focused on a high-altitude meltwater pond, located in the Puna de Atacama, Dry Andes. The extremophilic bacteria of this habitat must adapt to a range of extremities, including cold and dry climate, high UV radiation, high daily temperature fluctuations, low-nutrient availability, and negative water balance. This study aimed to explore the taxonomic diversity of cultivable extremophilic bacteria from sediment samples of a desiccated, high-altitude, meltwater pond using media with different organic matter contents and different incubation temperatures. Based on the 16S rRNA gene sequence analysis, the isolates were identified as members of the phyla Actinobacteria, Proteobacteria, and Firmicutes. The most abundant genera were Arthrobacter and Pseudoarthrobacter. The isolates had oligocarbophilic and psychrotrophic properties, suggesting that they have adapted to the extreme environmental parameters of their natural habitats. The results indicate a positive correlation between nutrient concentration and temperature tolerance.

17.
Sci Rep ; 14(1): 15677, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977718

ABSTRACT

Liver fibrosis is an important pathological process in chronic liver disease and cirrhosis. Recent studies have found a close association between intestinal microbiota and the development of liver fibrosis. To determine whether there are differences in the intestinal microbiota between rhesus macaques with liver fibrosis (MG) and normal rhesus macaques (MN), fecal samples were collected from 8 male MG and 12 male MN. The biological composition of the intestinal microbiota was then detected using 16S rRNA gene sequencing. The results revealed statistically significant differences in ASVs and Chao1 in the alpha-diversity and the beta-diversity of intestinal microbiota between MG and MN. Both groups shared Prevotella and Lactobacillus as common dominant microbiota. However, beneficial bacteria such as Lactobacillus were significantly less abundant in MG (P = 0.02). Predictive functional analysis using PICRUSt2 gene prediction revealed that MG exhibited a higher relative abundance of functions related to substance transport and metabolic pathways. This study may provide insight into further exploration of the mechanisms by which intestinal microbiota affect liver fibrosis and its potential future use in treating liver fibrosis.


Subject(s)
Gastrointestinal Microbiome , Liver Cirrhosis , Macaca mulatta , Metagenomics , RNA, Ribosomal, 16S , Animals , Macaca mulatta/microbiology , Gastrointestinal Microbiome/genetics , Liver Cirrhosis/microbiology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Feces/microbiology , Metagenome , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
18.
Poult Sci ; 103(9): 104000, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39002369

ABSTRACT

Dietary anti-interleukin (IL)-10 antibodies may protect broiler performance during coccidiosis by inhibiting Eimeria host-evasion pathways; however, anti-IL-10's effects on microbial communities during coccidiosis and secondary Clostridium perfringens (necrotic enteritis) challenge is unknown. The study objectives were to assess the jejunal microbiota of broilers fed anti-IL-10 during E. maxima ± C. perfringens challenge. Two replicate studies using Ross 308 chicks placed in wire-floor cages (32 cages/ replicate study; 20 chicks/ cage) were conducted, with chicks assigned to diets ± 0.03% anti-IL-10 for 25 d. In both replicate studies, challenge-designated chicks were inoculated with 1 × 108Salmonella Typhimurium colony forming units (CFU) at placement. On d14, S. Typhimurium-inoculated chicks were gavaged with 15,000 sporulated Eimeria maxima M6 oocysts and half the E. maxima-challenged chicks received 1×108C. perfringens CFUs on d 18 and 19. Six chicks/ treatment were euthanized for distal jejunum content collection at baseline (d 14), 7 d post-inoculation (pi) with E. maxima/ 3 dpi with C. perfringens (peak) or 11 dpi with E. maxima/ 7 dpi with C. perfringens (post-peak) for 16S rRNA gene amplicon sequencing. Sequences were quality screened (Mothur V.1.43.0) and clustered into de novo operation taxonomical units (OTU; 99% similarity) using the SILVA reference database (v138). Alpha diversity and log-transformed relative abundance data were analyzed in SAS 9.4 with replicate study, diet, challenge, and timepoint main effects plus associated interactions (P ≤ 0.05). Few baseline changes were observed, but E. maxima ± C. perfringens challenge reduced Romboutsia and Staphylococcus relative abundance 4- to 800-fold in both replicate studies (P ≤ 0.008). At peak challenge with secondary C. perfringens, feeding anti-IL-10 instead of the control diet reduced Clostridium sensu stricto 1 relative abundance 13- and 1,848-fold in both replicate studies (P < 0.0001); however, OTUs identified as C. perfringens were not affected by dietary anti-IL-10. These results indicate that anti-IL-10 does not affect the jejunal microbiota of unchallenged broilers, while coccidiosis or necrotic enteritis challenge generally contributed to greater microbiota alterations than diet.

19.
Res Vet Sci ; 176: 105354, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981836

ABSTRACT

Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.


Subject(s)
RNA, Ribosomal, 16S , Semen , Animals , Horses/microbiology , Male , Semen/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Metagenomics , Microbiota , DNA, Bacterial/genetics
20.
Sci Rep ; 14(1): 16339, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014002

ABSTRACT

The market value of vanilla beans (Vanilla planifolia) is constantly increasing due to their natural aroma and flavor properties that improve after a curing process, where bacteria colonization plays a critical role. However, a few publications suggest that bacteria play a role in the curing process. Hence, this study aimed to isolate Bacillus sp. that could be used for fermenting V. planifolia while analyzing their role in the curing process. Bacillus velezensis ZN-S10 identified with 16S rRNA sequencing was isolated from conventionally cured V. planifolia beans. A bacteria culture solution of B. velezensis ZN-S10 (1 mL of 1 × 107 CFU mL-1) was then coated on 1 kg of non-cured vanilla pods that was found to ferment and colonize vanilla. PCA results revealed distinguished bacterial communities of fermented vanilla and the control group, suggesting colonization of vanilla. Phylogenetic analysis showed that ZN-S10 was the dominant Bacillus genus member and narrowly correlated to B. velezensis EM-1 and B. velezensis PMC206-1, with 78% and 73% similarity, respectively. The bacterial taxonomic profiling of cured V. planifolia had a significant relative abundance of Firmicutes, Proteobacteria, Cyanobacteria, Planctomycetes, and Bacteroidetes phyla according to the predominance. Firmicutes accounted for 55% of the total bacterial sequences, suggesting their colonization and effective fermentation roles in curing vanilla.


Subject(s)
Bacillus , Phylogeny , RNA, Ribosomal, 16S , Vanilla , Bacillus/genetics , Bacillus/isolation & purification , Bacillus/metabolism , Bacillus/classification , Vanilla/microbiology , Vanilla/metabolism , RNA, Ribosomal, 16S/genetics , Fermentation , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...