Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
J Environ Sci (China) ; 147: 83-92, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003086

ABSTRACT

The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δ18OH2O value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined. The sulfur isotope fractionation factor (Δ34SSO4-stibnite) values decreased from 0.8‰ to -2.1‰ during the first 90 days, and increased to 2.6‰ at the 180 days, indicating the dominated intermediate sulfur species such as S2O32-, S0, and H2S (g) involved in Sb2S3 oxidation processes. The incorporation of O into sulfate derived from O2 (∼100%) indicated that the dissociated O2 was only directly adsorbed on the stibnite-S sites in the initial stage (0-90 days). The proportion of O incorporation into sulfate from water (27%-52%) increased in the late stage (90-300 days), which suggested the oxidation mechanism changed to hydroxyl attack on stibnite-S sites promoted by nearby adsorbed O2 on stibnite-Sb sites. The exchange of oxygen between sulfite and water may also contributed to the increase of water derived O into SO42-. The new insight of stibnite oxidation pathway contributes to the understanding of sulfide oxidation mechanism and helps to interpret field data.


Subject(s)
Oxidation-Reduction , Oxygen Isotopes , Sulfates , Sulfur Isotopes , Sulfur Isotopes/analysis , Sulfates/chemistry , Oxygen Isotopes/analysis , Antimony/chemistry , Models, Chemical , Aerobiosis , Oxygen/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Oxides
2.
Chemistry ; : e202403043, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373256

ABSTRACT

Developing efficient electrocatalysts to reduce HER overpotential is vital to enhance hydrogen production efficiency and minimize energy consumption. Adjusting the electronic structure of transition metal oxides via elemental doping is a potent strategy to improve the effectiveness of electrocatalysts for hydrogen evolution. In this work, we synthesized a set of niobium-doped tungsten oxides (Nbx-W18O49) under anoxic conditions using a straightforward "one-pot" solvothermal approach. After doping Nb, the oxygen vacancy content inside W18O49 was increased, which induced a synergistic effect with the active sites of tungsten. In acidic environments, the hydrogen evolution activity of the Nb0.6-W18O49 electrocatalyst is second only by 20 wt% Pt/C. It attains a current density of -10 mA cm-2 at an overpotential of 102 mV. By comparison with W18O49, Nb0.4-W18O49 and Nb0.5-W18O49, Nb0.6-W18O49 demonstrates a reduced charge transfer resistance, which significantly enhances its conductivity and the speed of electron movement across interfaces. Coupled with this feature are notably faster HER kinetics. Additionally, it exhibits excellent stability, meaning it maintains its performance and structural integrity over prolonged periods and under various operational conditions. This article provides a new perspective for discovering inexpensive and efficient hydrogen evolution electrocatalyst materials.

3.
Talanta ; 281: 126854, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260253

ABSTRACT

Assessing the levels of furfural in insulating oils is a crucial technical method for evaluating the degree of aging and mechanical deterioration of oil-paper insulation. The surface-enhanced Raman spectroscopy (SERS) technique provides an effective method for enhancing the sensitivity of in-situ detection of furfural. In this study, a homogeneous three-dimensional (3D) urchin-like Au@W18O49 heterostructure was synthesized as a SERS substrate using a straightforward hydrothermal method. The origin of the superior Raman enhancement properties of the 3D urchin-like heterostructures formed by the noble metal Au and the plasmonic semiconductor W18O49, which is rich in oxygen vacancies, is analyzed experimentally in conjunction with density-functional theory (DFT) calculations. The Raman enhancement is further amplified by the remarkable dual localized surface plasmon resonance (LSPR) effect, which generates a strong local electric field and creates numerous "hot spots," in addition to the interfacial charge transport (CT). The synergistic effect of these factors results in the 3D urchin-like Au@W18O49 heterostructure exhibiting exceptionally high SERS activity. Testing the rhodamine 6G (R6G) probe resulted in a Raman enhancement factor of 3.41 × 10-8, and the substrate demonstrated excellent homogeneity and stability. Furthermore, the substrate was effectively utilized to achieve highly sensitive in-situ surface-enhanced Raman scattering (SERS) detection of dissolved furfural in complex plant insulating oils. The development of the 3D urchin-like Au@W18O49 heterostructure and the exploration of its enhancement mechanism provide theoretical insights for the advancement of high-performance SERS substrates.

4.
ACS Appl Mater Interfaces ; 16(37): 49520-49532, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39238174

ABSTRACT

Recent trends in two-dimensional (2D) graphene have demonstrated significant potential for gas-sensing applications with significantly enhanced sensitivity even at room temperature. Herein, this study presents fabrication of distinctive gas sensor based on one-dimensional (1D) W18O49 nanofibers decorated 2D graphene, specifically coated on copper (Cu)-based interdigitated electrodes formed by DC sputtering, which can selectively detect NO2 gas at room temperature. The sensor device fabricated using W18O49/Gr1.5% (i.e., W18O49 nanofibers hybrid nanocomposite with 1.5 wt % graphene) displays excellent overall sensing performance at 27 °C (room temperature) with high response (∼150-160 times) to NO2 gas. The W18O49/Gr1.5%-based sensor device reflects the highly selective detection toward NO2 gas among various gases with quick response time of 3 s and speedy recovery in 6 s. The limit of detection of ∼0.3 ppm with excellent reproducibility and stability for 3 months in all weather conditions (tested in humidity conditions 20-97%) are superior features of the device under test. However, W18O49/Gr3% displayed higher selectivity for NO2 but resulted with comparatively reduced sensitivity than W18O49/Gr1.5% sensor. The enhanced sensing performance could be attributed to the graphene content to decorate the nanofibers on it, oxygen vacancies/defects, and the contacts between the sensing material and Cu. This favorable synthesis and properties of self-assembled hybrid composite materials provide a potential utilization for detecting NO2 gas in environmental safety inspection.

5.
Plant Cell Environ ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189985

ABSTRACT

Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.

6.
Water Res ; 262: 122123, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067271

ABSTRACT

Identifying the sources and cycling of phosphorus (P) is particularly important for formulating effective P management strategies in inland water. The oxygen isotopic compositions of phosphate (δ18OP) are recognized as a promising tool to solve this problem. However, the application of δ18OP in freshwater sediment is currently constrained by multiple difficulties. In this study, we presented a novel pretreatment method for δ18OP analysis of sediment inorganic P pools. Our results showed that the new method has advantages of simple operation, less time-consuming, and high P recovery rates. Specifically, we replaced the traditional Mg-induced co-precipitation (MAGIC) method by introducing Zr-Oxides gels with high selective adsorption function for phosphate. This made subsequent processing simpler and reduced the time consumption to ∼10 days, and the range of P recovery rates were from 88 % to 104 %. Furthermore, we emphasized the necessity of vacuum roasting following lyophilized Ag3PO4 to eliminate residual oxygen-containing impurities (e.g., NO3-, Ag2O, and organic matter). Additionally, evidences from microscopy and spectroscopy confirmed that this method ultimately yielded high-purity Ag3PO4 with the Ag:P molar ratios of 3.35:1. Importantly, combining direct synthesis Ag3PO4 between KH2PO4 and AgNO3 with the Ag3PO4 obtained by the method revealed no stark oxygen isotopic fractionation of phosphate during the pretreatment processes. The newly established δ18OP pretreatment methods here can also be extended to broader studies of the biogeochemical cycling of P in aquatic ecosystems, potentially advancing the understanding of the global P cycle.


Subject(s)
Fresh Water , Geologic Sediments , Oxygen Isotopes , Phosphorus , Geologic Sediments/chemistry , Fresh Water/chemistry , Phosphates/chemistry
7.
Sci Total Environ ; 949: 175022, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39059666

ABSTRACT

The biogeochemical cycling of phosphorus (P) in river-lake systems presents significant challenges in tracing P sources, highlighting the importance of effective traceability approaches for formulating targeted management measures to mitigate lake eutrophication. In this study, we used the oxygen isotope of phosphate (δ18Op) as a tracer in the river-lake systems, establishing a tracing pathway from potential end-members, through inflow rivers, and eventually to the lake. Taking Dianshan Lake and its main inflow rivers as the study area, we measured δ18Op values of potential end-members, including domestic sewage treatment plant effluents, industrial effluents from phosphorus-related enterprises (printing and dyeing, electroplating, plastics, etc.), and farmland soils. Notably, the industrial effluent signatures ranged from 13.1 ‰ to 21.0 ‰ with an average of 16.8 ‰ ± 3.2 ‰, enriching the δ18Op threshold database. Using the MixSIAR model, it was found that phosphorus in the Jishuigang River primarily originated from agricultural non-point sources and domestic sewage in the dry season, while the Qiandengpu River, with a higher proportion of urban area, had a greater influence from domestic sewage and industrial effluents. Moreover, significant differences were observed between δ18Op values at the lake entrances of the inflow rivers (13.7 ‰ ± 1.0 ‰) and in acid-soluble phosphate of the lake sediments (9.9 ‰ ± 1.0 ‰). Isotopic tracing revealed that phosphorus in the lake originated from both external inputs (80.6 %) and internal release (19.4 %) in the dry season. Alongside pollutant flux calculations based on the hydrological conditions and water quality of the inflow rivers, our findings indicated that phosphorus in Dianshan Lake was mainly attributed to agricultural non-point sources, domestic sewage and sediment release in the dry season. This study provided novel insights into the identification of pollution sources in the river-lake systems, with broad implications for pollution control and environmental protection.

8.
Plants (Basel) ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999611

ABSTRACT

Plant water use efficiency (WUE) is a comprehensive physiological indicator of plant growth and ability to adapt to drought. However, research on the mechanisms controlling WUE during plant growth and development remains weak. Here, we studied Pinus koraiensis as a typical evergreen conifer species in Northeast China. After collecting 80 tree samples with varying diameters at breast height (DBH), we measured δ13C and δ18O as an indicator of WUE, leaf morphology (volume, dry weight, and total epidermal area), ecological stoichiometry (carbon, nitrogen, and phosphorus content), and abiotic factors (light environment, soil pH, soil water content, and soil nutrient content). Correlational analysis of these variables revealed distinct differences between smaller/younger and larger/older plants: (1) In plants with DBH less than 52 cm, δ13C was positively related to DBH, and δ18O was negatively related to DBH. Plants with DBH greater than 52 cm showed no relationship between δ13C and DBH, and δ18O was positively related to DBH. (2) In plants with DBH less than 52 cm, there was a negative correlation between δ13C and δ18O and between δ13C and leaf phosphorus content (LP), but a positive correlation between δ13C and DBH, leaf mass per area (LMA), and leaf density (LD). The slopes of DBH-δ13C, δ18O-δ13C, leaf nitrogen content (LN)-δ13C, and LMA-δ13C correlations were greater in smaller plants than large plants. (3) Structural equation modelling showed that in smaller plants, DBH had a direct positive effect on δ13C content and a direct negative effect on δ18O, and there was a direct positive effect of light environment on δ18O. In larger plants, there was a direct negative effect of light environment on δ13C and a direct positive effect of DBH on light environment, as well as a negative effect of soil nitrogen content on leaf nitrogen. In smaller plants, DBH was the most important factor influencing δ13C, followed by δ18O and soil moisture, with light and soil pH showing minimal influence. In larger plants, light environment influenced δ13C the most, followed by soil nitrogen content and soil moisture content, with leaf nitrogen and DBH contributing little. The results suggest that water use efficiency strategies of P. koraiensis vary according to growth stage, and the effects of abiotic factors and functional traits vary at different growth stages.

9.
Materials (Basel) ; 17(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39063769

ABSTRACT

High-k Ba4Sm28/3Ti18O54 ceramics with improved microwave dielectric characteristics were successfully fabricated using the one-step reaction sintering (RS) route. The sintering characteristics, microstructure, crystal structure, infrared reflection spectrum, and microwave dielectric characteristics of Ba4Sm28/3Ti18O54 ceramics prepared by the RS route were systematically investigated. Samples prepared by the RS route exhibited single-phase orthorhombic tungsten-bronze structure and dense microstructure at optimum sintering temperature. Compared with the conventional solid-state (CS) process, the Ba4Sm28/3Ti18O54 ceramics fabricated by the RS route presented a smaller temperature coefficient (TCF), a higher quality factor (Q × f), and a higher permittivity (εr). The improved microwave dielectric characteristics were highly dependent on the theoretical permittivity, atomic packing fraction, suppression of Ti3+, and Ti-site bond valence. Excellent combined microwave dielectric characteristics (TCF = -7.9 ppm/°C, Q × f = 9519 GHz, εr = 80.26) were achieved for Ba4Sm28/3Ti18O54 ceramics prepared by RS route sintered at 1400 °C, suggesting the RS route was a straightforward, economical and effective route to prepare high-performance Ba4Sm28/3Ti18O54 ceramics with promising application potential.

10.
Methods Mol Biol ; 2823: 225-239, 2024.
Article in English | MEDLINE | ID: mdl-39052223

ABSTRACT

Quantitative proteomics approaches based on stable isotopic labeling and mass spectrometry have been widely applied to disease research, drug target discovery, biomarker identification, and systems biology. One of the notable stable isotopic labeling approaches is trypsin-catalyzed 18O/16O labeling, which has its own advantages of low sample consumption, simple labeling procedure, cost-effectiveness, and absence of chemical reactions that potentially generate by-products. In this chapter, a protocol for 18O/16O labeling-based quantitative proteomics approach is described with an application to the identification of proteomic biomarkers of acetaminophen (APAP)-induced hepatotoxicity in rats. The protocol involves first the extraction of proteins from liver tissues of control and APAP-treated rats and digestion into peptides by trypsin. After cleaning of the peptides by solid-phase extraction, equal amounts of peptides from the APAP treatment and the control groups are then subject to trypsin-catalyzed 18O/16O labeling. The labeled peptides are combined and fractionated by off-line strong cation exchange liquid chromatography (SCXLC), and each fraction is then analyzed by nanoflow reversed-phase LC coupled online with tandem mass spectrometry (RPLC-MS/MS) for identification and quantification of differential protein expression between APAP-treated rats and controls. The protocol is applicable to quantitative proteomic analysis for a variety of biological samples.


Subject(s)
Acetaminophen , Biomarkers , Chemical and Drug Induced Liver Injury , Isotope Labeling , Liver , Proteomics , Tandem Mass Spectrometry , Acetaminophen/toxicity , Acetaminophen/adverse effects , Isotope Labeling/methods , Proteomics/methods , Animals , Rats , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology , Tandem Mass Spectrometry/methods , Liver/metabolism , Liver/drug effects , Liver/pathology , Proteome/metabolism , Proteome/analysis , Trypsin/metabolism , Oxygen Isotopes/metabolism
11.
Anal Sci Adv ; 5(3-4): 2300053, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38827022

ABSTRACT

Water stable isotopologue analysis is widely used to disentangle ecohydrological processes. Yet, there are increasing reports of measurement uncertainties for established and emerging methods, such as cryogenic vacuum extraction (CVE) or cavity ring-down spectroscopy (CRDS). With this study, we investigate two pitfalls, that potentially contribute to uncertainties in water-stable isotopologue research. To investigate fractionation sources in CVE, we extracted pure water of known isotopic composition with cotton, glass wool or without cover and compared the isotopologue results with non-extracted reference samples. To characterise the dependency of δ2H and δ18O on the water mixing ratio in CRDS, which is of high importance for in-situ applications with large natural variations in mixing ratios, we chose samples with a large range of isotopic compositions and determined δ2H and δ18O for different water mixing ratios with two CRDS analysers (Picarro, Inc.). Cotton wool had a strong fractionation effect on δ2H values, which increased with more 2H-enriched samples. δ2H and δ18O values showed a strong dependency on the water mixing ratio analysed with CRDS with differences of up to 34.5‰ (δ2H) and 3.9‰ (δ18O) for the same sample at different mixing ratios. CVE and CRDS, now routinely applied in water stable isotopologue research, come with pitfalls, namely fractionation effects of cover materials and water mixing ratio dependencies of δ2H and δ18O, which can lead to erroneous isotopologue results and thus, invalid conclusions about (ecohydrological) processes. These practical issues identified here should be reported and addressed adequately in water-stable isotopologue research.

12.
Discov Nano ; 19(1): 89, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758502

ABSTRACT

In this study, a simple route for the synthesis of hierarchical W18O49 assembled by nanowires is reported. The morphologies and formation of W18O49 single-crystal could be controlled by changing the concentration of WCl6-ethanol solution. This synthesis strategy has the advantages that the hierarchical W18O49 microspheres could be economic synthesized at 180 °C without adding additives. Furthermore, efficient optical absorption properties in ultraviolet, visible and near-infrared region were obtained for the hierarchical W18O49 microspheres comparing with nanowires. These results will further promote the research of tungsten-based oxide nanomaterials.

13.
Sci Bull (Beijing) ; 69(14): 2281-2288, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38724301

ABSTRACT

A "once-in-a-millennium" super rainstorm battered Zhengzhou, central China, from 07/17/2021 to 07/22/2021 (named "7.20" Zhengzhou rainstorm). It killed 398 people and caused billions of dollars in damage. A pressing question is whether rainstorms of this intensity can be effectively documented by geological archives to understand better their historical variabilities beyond the range of meteorological data. Here, four land snail shells were collected from Zhengzhou, and weekly to daily resolved snail shell δ18O records from June to September of 2021 were obtained by gas-source mass spectrometry and secondary ion mass spectrometry. The daily resolved records show a dramatic negative shift between 06/18/2021 and 09/18/2021, which has been attributed to the "7.20" Zhengzhou rainstorm. Moreover, the measured amplitude of this shift is consistent with the theoretical value estimated from the flux balance model and instrumental data for the "7.20" Zhengzhou rainstorm. Our results suggest that the ultra-high resolution δ18O of land snail shells have the potential to reconstruct local synoptic scale rainstorms quantitatively, and thus fossil snail shells in sedimentary strata can be valuable material for investigating the historical variability of local rainstorms under different climate backgrounds.


Subject(s)
Animal Shells , Oxygen Isotopes , Snails , Snails/chemistry , Animals , China , Animal Shells/chemistry , Oxygen Isotopes/analysis , Rain , Fossils
14.
Food Chem ; 449: 139194, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574525

ABSTRACT

Tracing methods of non-European EVOOs commercialized worldwide are becoming crucial for effective authenticity controls. Limited analytical studies of these oils are available on a global scale, similar to those of European EVOOs. We report for the first time the fatty acid concentrations, bulk-oil 2H/1H, 13C/12C, and 18O/16O ratios and fatty acid 13C/12C ratios of 43 authentic monovarietal EVOOs from different geographical regions in Argentina and Uruguay. The samples were obtained from a wide range of latitudes and altitudes along an E-W profile, from lowlands near the Atlantic Ocean to the pre-Andean highlands near the Pacific Ocean. Principal component scores were used to cluster EVOOs into three groups- central-western Argentina, central Argentina, and Uruguay-based on nine stable isotope ratios and the oleic-linoleic acid concentration ratio. The bulk 2H/1H and 18O/16O values and 13C/12C of palmitoleic and linoleic acids provide good tools for differentiating these oils via linear discriminant analysis.


Subject(s)
Fatty Acids , Olive Oil , Uruguay , Argentina , Fatty Acids/chemistry , Fatty Acids/analysis , Olive Oil/chemistry , Discriminant Analysis , Carbon Isotopes/analysis
15.
Plant Cell Environ ; 47(6): 2274-2287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488789

ABSTRACT

The 18O enrichment (Δ18O) of cellulose (Δ18OCel) is recognized as a unique archive of past climate and plant function. However, there is still uncertainty regarding the proportion of oxygen in cellulose (pex) that exchanges post-photosynthetically with medium water of cellulose synthesis. Particularly, recent research with C3 grasses demonstrated that the Δ18O of leaf sucrose (Δ18OSuc, the parent substrate for cellulose synthesis) can be much higher than predicted from daytime Δ18O of leaf water (Δ18OLW), which could alter conclusions on photosynthetic versus post-photosynthetic effects on Δ18OCel via pex. Here, we assessed pex in leaves of perennial ryegrass (Lolium perenne) grown at different atmospheric relative humidity (RH) and CO2 levels, by determinations of Δ18OCel in leaves, Δ18OLGDZW (the Δ18O of water in the leaf growth-and-differentiation zone) and both Δ18OSuc and Δ18OLW (adjusted for εbio, the biosynthetic fractionation between water and carbohydrates) as alternative proxies for the substrate for cellulose synthesis. Δ18OLGDZW was always close to irrigation water, and pex was similar (0.53 ± 0.02 SE) across environments when determinations were based on Δ18OSuc. Conversely, pex was erroneously and variably underestimated (range 0.02-0.44) when based on Δ18OLW. The photosynthetic signal fraction in Δ18OCel is much more constant than hitherto assumed, encouraging leaf physiological reconstructions.


Subject(s)
Carbon Dioxide , Cellulose , Humidity , Oxygen Isotopes , Plant Leaves , Sucrose , Plant Leaves/metabolism , Cellulose/metabolism , Carbon Dioxide/metabolism , Sucrose/metabolism , Oxygen Isotopes/metabolism , Lolium/metabolism , Lolium/growth & development , Lolium/physiology , Atmosphere , Photosynthesis , Water/metabolism
16.
Environ Sci Pollut Res Int ; 31(18): 27099-27116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503949

ABSTRACT

This research provides a comprehensive analysis of groundwater pollution in the Lower Anayari Catchment (LAC) through δ2H and δ18O isotopic analysis, along with positive matrix factorization (PMF) and PCS-MLR receptor models. Forty groundwater samples were collected from hand-dug wells and equipped boreholes across the LAC. Flame photometry for Na+ and K+, complexometric titration for Ca2+, ion chromatography for Cl-, F-, NO3-, SO42-, and PO43-, and atomic absorption spectrometry for Mg2+, Fe, Pb, Cd, As, and Ni were analytical techniques/instruments employed. In regard to cations, Na+ has the highest average concentration of 63.0 mg/L, while Mg2+ has the lowest at 2.58 mg/L. Concerning the anions and nutrients, Cl- has the highest mean concentration of 18.7 mg/L, and Fl- has the lowest at 0.50 mg/L. Metalloids were detected in trace amount with Fe displaying the highest mean concentration of 0.077 mg/L whereas Cd and As recorded lowest (0.001 mg/L). The average values for groundwater δ18O and δ2H were - 3.64‰ and - 20.7‰, respectively; the average values for rainwater isotopic composition were - 3.41‰ for δ18O and - 17.4‰ for δ2H. It is believed that natural geological features, particularly biotite granitoid and volcanic flow/subvolcanic rocks from the Birimian Supergroup, significantly influence groundwater mineralisation. Additionally, the impact of anthropogenic activities on water quality, with urban development and agricultural practices, may be attributed to increasing levels of certain contaminants such as Fe, Ni, NO3-, and PO43-. This research contributes to the broader field of hydrological study and provides practical implications for managing and conserving water resources in similar contexts. The innovative combination of isotopic and statistical analyses sets a new standard for future studies in groundwater quality assessment, emphasising the need for comprehensive approaches that consider both geological characteristics and human impacts for sustainable water resource management.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis
17.
J Colloid Interface Sci ; 664: 736-747, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492375

ABSTRACT

Enhancing the activation of peroxymonosulfate (PMS) is essential for generating more reactive oxygen species in advanced oxidation process (AOPs). Nevertheless, improving PMS adsorption and expediting interfacial electron transfer to enhance reaction kinetics pose significant challenges. Herein, we construct confined W18O49 nanowires with asymmetric active centers containing Co-Vo-W (Vo: oxygen vacancy). The design incorporates surface-rich Vo and single-atom Co, and the resulting material is employed for PMS activation in water purification. By coupling unsaturated coordinated electrons in Vo with low-valence Co single atoms to construct an the "electron fountainhead", the adsorption and activation of PMS are enhanced. This results in the generation of more active free radicals (SO4•-, •OH, •O2-) and non-free radicals (1O2) for the decomposition of micropollutants. Thereinto, the degradation rate of bisphenol A (BPA) by Co-W18O49 is 32.6 times faster that of W18O49 monomer, which is also much higher than those of other transition-metal-doped W18O49 composites. This work is expected to help to elucidate the rational design and efficient PMS activation of catalysts with asymmetric active centers.

18.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540949

ABSTRACT

Stable isotopes are commonly utilized for the geographical origin verification of foods, including wheat. However, assessing processed products poses a greater challenge due to the alterations that take place during processing and which have not been fully elucidated yet. In the current study, the effects of the formulation (the mass ratios of gluten to starch), boiling process and their interaction on the stable hydrogen (δ2H) and oxygen (δ18O) isotopic ratios of wheat noodles were evaluated. The δ2H and δ18O of noodles with different formulations (the mass ratios of gluten to starch) as raw materials, in uncooked and cooked (boiled in water) noodles, were examined. The results indicated that the δ2H of the boiled noodles ranged from -80.1‱ to -46.8‱ and were significantly lower than those of the raw materials, which ranged from -73.0‱ to -39.2‱, and the uncooked noodles, which ranged from -73.3‱ to -39.6‱. Oppositely, 18O was enriched in the boiled noodles, ranging from 27.7‱ to 31.3‱, compared with the uncooked noodles, ranging from 28.4‱ to 29.6‱. In addition, a significant interaction effect between the formulation and the boiling process was recorded for δ18O. This study shows that the hydrogen and oxygen stable isotopic compositions of noodles were significantly changed during the boiling process, and the isotopic fractionation varies with the different formulations.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124011, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38428210

ABSTRACT

Research on 12C18O was carried out using two complementary Fourier-transform methods: (1) vacuum-ultraviolet absorption spectroscopy, with an accuracy ca. 0.03 cm-1 on the DESIRS beamline (SOLEIL synchrotron) and (2) visible emission spectroscopy with an accuracy of about 0.005-0.007 cm-1 by means of the Bruker IFS 125HR spectrometer (University of Rzeszów). The maximum rotational quantum number of the energy levels involved in the observed spectral lines was Jmax = 54. An effective Hamiltonian and the term-value fitting approach were implemented for the precise analysis of the A1Π(v = 3) level in 12C18O. It was performed by means of the PGOPHER code. The data set consisted of 571 spectral lines belonging to the A1Π-X1Σ+(3, 0), B1Σ+-A1Π(0, 3), C1Σ+-A1Π(0, 3) bands and several lines involving states that perturb the A1Π(v = 3) level as well as to the previously analysed B1Σ+-X1Σ+(0, 0) and C1Σ+-X1Σ+(0, 0) transitions. A significantly extended quantum-mechanical description of the A1Π(v = 3) level in 12C18O was provided. It consists of the 5 new unimolecular interactions of the spin-orbit and rotation-electronic nature, which had not been taken into account previously in the literature. The ro-vibronic term values of the A1Π(v = 3, Jmax = 55), a'3Σ+(v = 13), D1Δ(v = 4) and I1Σ-(v = 5) levels were determined with precision improved by a factor of 10 relative to the previously known values.

20.
ACS Appl Mater Interfaces ; 16(14): 17432-17441, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38544402

ABSTRACT

Z-scheme heterostructure-based photocatalysts consist of a reduction photocatalyst and an oxidation photocatalyst, enabling them to possess a high capacity for both reduction and oxidation. However, the coupling reaction between photocatalytic H2 generation through water reduction and sterilization using Z-scheme systems has been rarely reported. Herein, 1D W18O49 nanowires embedded over 2D g-C3N4 nanosheets are well-constructed as an integrated Z-scheme heterojunction. Experimental results and density functional theory calculations not only demonstrate the achievement of efficient interfacial charge separation and transport, leading to prolonged lifetime of photogenerated charge carriers, but also directly confirm the mechanism of Z-scheme charge transfer. As expected, the optimized W18O49/g-C3N4 nanostructure exhibits superior photocatalytic sterilization activity against Staphylococcus aureus as well as excellent H2 generation performance under visible-light irradiation (λ ≥ 420 nm). Due to its nontoxic nature, W18O49/g-C3N4 holds great potential in eradicating bacterial infections in living organisms.


Subject(s)
Bacteria , Light , Oxygen Isotopes , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL