Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phytochemistry ; 226: 114203, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38969251

ABSTRACT

Glycosyltransferases catalyze the transfer of a glycoside group to a wide range of acceptor compounds to produce glycoconjugates with diverse biological and pharmacological activities. The present work reports the identification and biochemical characterization of Nicotiana tabacum UGT89A2 glycosyltransferase (NtUGT89A2). The enzyme is a monomer in solution that catalyzes the O-ß-glucosylation of di- and tri-hydroxylated and chlorinated derivatives of benzoic acid. NtUGT89A2 has a preference for 2,5-dihydroxybenzoic acid (2,5-DHBA) over 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,4-dihydroxybenzoic acid (2,4-DHBA). Other substrates that can be used by NtUGT89A2 include 3,4,5-trihydroxybenzoic acid and chlorinated derivatives such as 2-chloro-5-hydroxybenzoic acid (2-Cl-5-HBA). The substrates of NtUGT89A2 were identified by thermal stability experiments, where we observed a maximum increase of the thermal denaturation midpoint (Tm) of 10 °C in the presence of 2,5-DHBA and UDP-glucose. On the other hand, the highest specific activity was obtained with 2,5-DHBA (225 ± 1.7 nkat/mg). Further characterization revealed that the enzyme has a micromolar affinity for its substrates. Notably, the enzyme retains full activity after incubation at 70 °C for 1 h. These results provide a basis for future functional and structural studies of NtUGT89A2.


Subject(s)
Glycosyltransferases , Nicotiana , Nicotiana/enzymology , Glycosylation , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Molecular Structure , Benzoic Acid/chemistry , Benzoic Acid/metabolism , Benzoates/chemistry , Benzoates/metabolism , Biocatalysis
2.
Anal Chim Acta ; 807: 96-102, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24356225

ABSTRACT

Lipid pathways play important biological roles in mammalian embryology, directing early developmental pathways to differentiation. Phospholipids and triglycerides, among others, are the main composing lipids of zona pellucida in several embryo species. Lipid analysis in embryos by mass spectrometry usually requires sample preparation and/or matrix application. This novel approach using silica plate laser desorption/ionization mass spectrometry imaging (SP-LDI-MSI) allows direct single-cell imaging and embryo region discrimination with no matrix coating. Its application is herein described for two- and eight-cell embryos. Lipid biomarkers for blastomere and intact zona pellucida are reported and corroborated by both fragmentation reactions (MS/MS) and images. Results obtained in this work are understood to be of great use for further developments on in vitro bovine fertilization. Since much of the processes can be monitored by characteristic biomarkers, it is now possible to precisely identify cell division errors during early embryo stages, as well as evaluate pre-implantation conditions.


Subject(s)
Embryo, Mammalian/metabolism , Lipids/analysis , Silicon Dioxide/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Biomarkers/analysis , Cattle , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL