Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Braz. j. biol ; 83: e273843, 2023.
Article in English | VETINDEX | ID: biblio-1447642

ABSTRACT

Instead of typical household trash, the heavy metal complexes, organic chemicals, and other poisons produced by huge enterprises threaten water systems across the world. In order to protect our drinking water from pollution, we must keep a close eye on the situation. Nanotechnology, specifically two-dimensional (2D) nanomaterials, is used in certain wastewater treatment systems. Graphene, g-C3N4, MoS2, and MXene are just a few examples of emerging 2D nanomaterials that exhibit an extraordinary ratio of surface (m3), providing material consumption, time consumption, and treatment technique for cleaning and observing water. In this post, we'll talk about the ways in which 2D nanomaterials may be tuned to perform certain functions, namely how they can be used for water management. The following is a quick overview of nanostructured materials and its possible use in water management: Also discussed in length are the applications of 2D nanomaterials in water purification, including pollutant adsorption, filtration, disinfection, and photocatalysis. Fluorescence sensors, colorimetric, electrochemical, and field-effect transistors are only some of the devices being studied for their potential use in monitoring water quality using 2D nanomaterials. Utilizing 2D content has its benefits and pitfalls when used to water management. New developments in this fast-expanding business will boost water treatment quality and accessibility in response to rising awareness of the need of clean, fresh water among future generations.


Em vez do lixo doméstico típico, os complexos de metais pesados, produtos químicos orgânicos e outros venenos produzidos por grandes empresas ameaçam os sistemas de água em todo o mundo. Para proteger nossa água potável da poluição, devemos ficar de olho na situação. A nanotecnologia, especificamente nanomateriais bidimensionais (2D), é usada em certos sistemas de tratamento de águas residuais. Grafeno, g-C3N4, MoS2 e MXene são apenas alguns exemplos de nanomateriais 2D emergentes que exibem uma extraordinária proporção de superfície (m3), proporcionando consumo de material, consumo de tempo e técnica de tratamento para limpeza e observação da água. Neste trabalho, trataremos das maneiras pelas quais os nanomateriais 2D podem ser ajustados para desempenhar determinadas funções, ou seja, como eles podem ser usados para o gerenciamento de água. A seguir, uma breve visão geral dos materiais nanoestruturados e seu possível uso no gerenciamento de água. Serão também discutidas detalhadamente as aplicações de nanomateriais 2D na purificação de água, incluindo adsorção de poluentes, filtração, desinfecção e fotocatálise. Sensores de fluorescência, colorimétricos, eletroquímicos e transistores de efeito de campo são apenas alguns dos dispositivos que estão sendo estudados para uso potencial no monitoramento da qualidade da água usando nanomateriais 2D. A utilização de conteúdo 2D tem seus benefícios e armadilhas quando utilizada para gerenciamento de água. Novos desenvolvimentos neste negócio em rápida expansão visam aumentar a qualidade e a acessibilidade do tratamento de água em resposta à crescente conscientização sobre a necessidade de água limpa e fresca entre as gerações futuras.


Subject(s)
Water Pollution/prevention & control , Water Monitoring , Water Purification , Nanostructures
2.
Environ Sci Pollut Res Int ; 28(19): 23684-23698, 2021 May.
Article in English | MEDLINE | ID: mdl-32996089

ABSTRACT

Multilayer graphene oxide (mGO) was synthesized and functionalized via co-precipitation method to produce magnetic Fe3O4-functionalized multilayer graphene oxide nanocomposite (MmGO). Photocatalytic properties of MmGO were investigated in the photodegradation of raw textile wastewater samples. Fourier-transformed infrared spectroscopy revealed Fe-O vibrations, characterized by the band shift from 636.27 to 587.25 cm-1 on MmGO. X-ray diffraction confirmed the successful oxidation of graphite by the (002) peak at 10° and indicated the presence of Fe3O4 on MmGO surface by the peaks at 2θ 35.8° (311), 42.71° (400), 54.09° (511), and 62.8° (440). There was no detection of coercivity field and remnant magnetization, evidencing a material with superparamagnetic properties. Then, the textile effluent was treated by heterogeneous photo-Fenton (HPF) reaction. A 22 factorial design was conducted to evaluate the effects of MmGO dosage and H2O2 concentration on HPF, with color and turbidity removal as response variables. The kinetic behavior of the adsorption and HPF processes was investigated separately, in which, the equilibrium was reached within 60 and 120 min, for adsorption and HPF, respectively. Pseudo-second-order model exhibited the best fit, with COD uptake capacity at equilibrium of 4094.94 mg g-1, for chemical oxygen demand. The modeling of kinetics data showed that the Chan and Chu model was the most representative for HPF, with initial removal rate of 95.52 min-1. The removal of organic matter was 76.36% greater than that reached by conventional treatment at textile mills. The presence of Fe3O4 nanoparticles attached to MmGO surface was responsible for the increase of electron mobility and the enhancement of its photocatalytic properties. Finally, MmGO presented low phytotoxic to Cucumis sativus L. with a RGI of 0.53. These results bring satisfactory perspectives regarding further employment, on large scale, of MmGO as nanocatalyst of textile pollutants.


Subject(s)
Graphite , Water Pollutants, Chemical , Adsorption , Hydrogen Peroxide , Kinetics , Textiles , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL