Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
J Chromatogr A ; 1734: 465319, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39226750

ABSTRACT

The rapid growth in the use of two dimensional liquid chromatography (2D-LC) applied to the analysis of moderately to highly complex mixtures, has been fueled by continuous improvements in performance and robustness of the instrument components, as well as the ease-of-use of software necessary for controlling the 2D-LC instrument hardware, and analysis of the large data files that result from this type of work. This work has focused on the evaluation of the performance of an online full comprehensive mode (LC×LC), when an active modulation is implemented using a flow splitter pump placed after the 1D effluent. Two different types of splitting pumps were evaluated: a binary ultra-high pressure liquid chromatography (UHPLC) pump and a high precision syringe pump. We analyzed the performance (reproducibility in peak area and retention times and the 2D peak dispersion) as a function of the location of the active pump Before or After the modulation valve, and the influence of connecting tubes (based on internal diameter and length) necessary between the interface, waste, and the splitting pump. The effect on the flow direction on the filling and flushing of the injection loops at the modulation valve was also analyzed for each pump. In this study, we demonstrate that flow-splitting LCxLC assembly can be performed using either a UHPLC binary pump or a simple syringe pump. Flow splitting after the first dimension is a straightforward strategy to: (i) independently select the 1D column and flow rates with respect to the second dimension; (ii) consciously dilute the eluate according to the solvent characteristics of the second dimension, thereby avoiding 2D peak distortions; and (iii) adapt the injected amount to the second column according to the relative concentration of the components in a complex sample. However, careful consideration of the system setup is necessary. It is demonstrated how experimental results can be significantly affected in terms of peak broadening and reproducibility if optimization of the interface is not taken into account. In addition, under the optimized conditions, the reproducibility in peak area and dispersion in the 2D dimension were evaluated as a function of the amount of sample transferred in terms of percentage of filled loop.


Subject(s)
Equipment Design , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Chromatography, Liquid/methods
2.
J Chromatogr A ; 1732: 465233, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39142171

ABSTRACT

Metabolites identification is crucial to develop functional foods or perform quality control. Prunella vulgaris (Xia-Ku-Cao) is a medicinal and edible plant used as the herbal medicine or main additive in functional beverage. However, current analytical strategies can only on-line characterize tens of compounds, restricted by insufficient chromatographic resolution and low coverage of the mass spectrometric scan methods. This work was designed to characterize the wide-polarity components from the ear of P. vulgaris. The total extract was fractionated by semi-preparative high-performance liquid chromatography into the retained medium-polarity fraction and unretained polar fraction, which were further analyzed by offline two-dimensional liquid chromatography (2D-LC) and hydrophilic interaction chromatography, respectively. Data-independent high-definition MSE of the Vion™ ion mobility time-of-flight mass spectrometer was utilized enabling the high-coverage acquisition of collision-induced dissociation-MS2 data. The offline 2D-LC, configuring the XBridge Amide and HSS T3 columns, gave high orthogonality (0.81) and effective peak capacity (1555). Automatic peak annotation facilitated by the UNIFI™ bioinformatics platform and comparison with 62 reference compounds achieved the efficient and more reliable structural elucidation. We could characterize 255 compounds from P. vulgaris, with numerous phenylpropanoid phenolic acids and triterpenoid O-glycosides newly reported. Especially, collision cross section (CCS) prediction and targeted isolation of three compounds assisted in the identification of 39 groups of isomers. Additionally, 17 hydrophilic compounds, involving oligosaccharides and organic acids, were characterized from the unretained polar fraction. Conclusively, the in-depth metabolites identification of P. vulgaris was accomplished, and the results can benefit the development and better quality control of this valuable plant.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Plant Extracts , Prunella , Prunella/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Ion Mobility Spectrometry/methods
3.
J Chromatogr A ; 1733: 465242, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39154497

ABSTRACT

Sulodexide, a heparinoid medicine, is wildly used in clinic for prophylaxis and treatment of thromboembolic diseases and diabetic nephropathy. Despite its widespread use, the structure of Sulodexide remains poorly understood. It consists of various polysaccharides characterized by differing sugar compositions, linkages, and sulfonation patterns, yet they share common features such as strong hydrophilicity, high native charges, and considerable polydispersity, posing significant challenges for conventional chromatographic and online mass spectrometry (MS) characterization. In this work, a novel analytical method combining multiple-heart cut 2D-LC and in-source acid-induced dissociation (inAID) MS was developed. Three polysaccharides in Sulodexide were separated by high efficient strong-anion-exchange chromatography, followed by desalting with the second dimensional size-exclusion chromatography before MS. A novel MS strategy employing inAID technique was utilized for online analysis, leading to the initial identification of Sulodexide polysaccharide components. The results were validated through disaccharide composition analysis of those three polysaccharide components after offline preparation. This advanced strategy, merging various techniques, enable a comprehensive structural elucidation of such complex drugs and provides a viable tool for potential routine analysis of complex biomolecules.


Subject(s)
Glycosaminoglycans , Glycosaminoglycans/chemistry , Glycosaminoglycans/analysis , Mass Spectrometry/methods , Chromatography, Gel/methods , Chromatography, Ion Exchange/methods
4.
J Chromatogr A ; 1726: 464941, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749274

ABSTRACT

Method development in comprehensive two-dimensional liquid chromatography (LC×LC) is a challenging process. The interdependencies between the two dimensions and the possibility of incorporating complex gradient profiles, such as multi-segmented gradients or shifting gradients, make trial-and-error method development time-consuming and highly dependent on user experience. Retention modeling and Bayesian optimization (BO) have been proposed as solutions to mitigate these issues. However, both approaches have their strengths and weaknesses. On the one hand, retention modeling, which approximates true retention behavior, depends on effective peak tracking and accurate retention time and width predictions, which are increasingly challenging for complex samples and advanced gradient assemblies. On the other hand, Bayesian optimization may require many experiments when dealing with many adjustable parameters, as in LC×LC. Therefore, in this work, we investigate the use of multi-task Bayesian optimization (MTBO), a method that can combine information from both retention modeling and experimental measurements. The algorithm was first tested and compared with BO using a synthetic retention modeling test case, where it was shown that MTBO finds better optima with fewer method-development iterations than conventional BO. Next, the algorithm was tested on the optimization of a method for a pesticide sample and we found that the algorithm was able to improve upon the initial scanning experiments. Multi-task Bayesian optimization is a promising technique in situations where modeling retention is challenging, and the high number of adjustable parameters and/or limited optimization budget makes traditional Bayesian optimization impractical.


Subject(s)
Algorithms , Bayes Theorem , Chromatography, Liquid/methods , Pesticides/isolation & purification , Pesticides/analysis
5.
Foods ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672845

ABSTRACT

Natural polysaccharides are important active biomolecules. However, the analysis and structural characterization of polysaccharides are challenging tasks that often require multiple techniques and maps to reflect their structural features. This study aimed to propose a new heart-cutting two-dimensional liquid chromatography (2D-LC) method for separating and analyzing polysaccharides to explore the multidimensional information of polysaccharide structure in a single map. That is, the first-dimension liquid chromatography (1D-LC) presents molecular-weight information, and the second-dimension liquid chromatography (2D-LC) shows the fingerprints of polysaccharides. In this 2D-LC system, the size-exclusion chromatography-hydrophilic interaction chromatography (SEC-HILIC) model was established. Coupling with a charged aerosol detector (CAD) eliminated the need for the derivatization of the polysaccharide sample, allowing the whole process to be completed within 80 min. The methods were all validated in terms of precision, linearity, stability, and repeatability. The capability of the new 2D-LC method was demonstrated in determining various species of natural polysaccharides. Our experimental data demonstrated the feasibility of the whole systematic approach, opening the door for further applications in the field of natural polysaccharide analysis.

6.
J Chromatogr A ; 1721: 464824, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38522405

ABSTRACT

Two-dimensional liquid chromatography (2D-LC), and in particular comprehensive two-dimensional liquid chromatography (LC×LC), offers increased peak capacity, resolution and selectivity compared to one-dimensional liquid chromatography. It is commonly accepted that the technique produces the best results when the separation mechanisms in the two dimensions are completely orthogonal; however, the use of similar separation mechanisms in both dimensions has been gaining popularity as it helps avoid difficulties related to mobile phase incompatibility and poor column efficiency. The remarkable advantages of using reversed phase in both dimensions (RPLC×RPLC) over other separation mechanisms made it a promising technique in the separation of complex samples. This review discusses some physical and practical considerations in method development for 2D-LC involving the use of RP in both dimensions. In addition, an extensive overview is presented of different applications that relied on RPLC×RPLC and 2D-LC with reversed phase column combinations to separate components of complex samples in different fields including food analysis, natural product analysis, environmental analysis, proteomics, lipidomics and metabolomics.


Subject(s)
Chromatography, Reverse-Phase , Proteomics , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods
7.
Foods ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540862

ABSTRACT

Sheep's milk is a significant source of nucleotide monophosphates (NMPs) but can also contain undesirable residues from veterinary drugs, posing a potential human health risk. This study introduces a novel application of two-dimensional liquid chromatography (2D-LC), in heart-cutting mode, for the simultaneous determination of nucleotides and veterinary drug residues in sheep's milk. 2D-LC allows for the separation of these compounds in a single chromatographic run despite their differing physicochemical properties. The proposed method separates six veterinary drug residues and five NMPs in a single injection. The compounds were separated using a C18 reversed-phase column in the first dimension and a Primesep SB analytical column in the second dimension. The method performance was evaluated in terms of linearity range, detection and quantification limits, matrix effects, precision, and accuracy. The results demonstrated good linearity and sensitivity, with quantification limits allowing for the quantification of veterinary drugs at the maximum residue level and nucleotides at typical levels found in milk samples. The method has been successfully applied to the analysis of sheep's milk samples acquired from local supermarkets, with recoveries within a range of 70-119% and 82-117% for veterinary residues and NMPs, respectively.

8.
J Chromatogr A ; 1720: 464810, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38471299

ABSTRACT

Nowadays, the higher peak capacity achievable by comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of vegetal samples is well-recognized. In addition, numerous compounds may be present in very different amounts. Cannabinoids and terpenes represent the main components of Cannabis sativa inflorescence samples, whose quantities are relevant for many application purposes. The analyses of both families are performed by different methods, at least two different separation methodologies, mainly according to their chemical characteristics and concentration levels. In this work, concentration differences and sample complexity issues were addressed using an LC×LC method that incorporates an optimized modulation strategy, namely smart active modulation, for the simultaneous analysis of cannabinoids and terpenes. The system was built by interposing an active flow splitter pump between both dimensions. This set up aimed to exploit the known advantages of LC×LC. In addition, here we proposed to use the splitter pump for online control over the splitting ratio to facilitate the selective dilution of different eluted fractions containing compounds with highly different concentrations. This work represents the first application and demonstration of smart active modulation (SAM) in LC×LC to simultaneously determine analytes with significant differences in concentration levels present in complex samples. The proposed method was tested with eight different strains, from which fingerprints were taken, and numerous cannabinoids and terpenes were identified in these samples. With this strategy, between 49 and 54 peaks were obtained in the LC×LC chromatograms corresponding to different strains. THCA-A was the main component in six strains, while CBDA was the main component in the other two strains. The main terpenes found were myrcene (in five strains), limonene (in two strains), and humulene (in one strain). Additionally, numerous other cannabinoids and terpenes were identified in these samples, providing valuable compositional information for growers, as well as medical and recreational users. The SAM strategy here proposed is simple and it can be extended to other complex matrices.


Subject(s)
Cannabinoids , Cannabis , Humans , Cannabinoids/analysis , Cannabis/chemistry , Terpenes/analysis , Inflorescence/chemistry , Gas Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid
9.
J Pharm Biomed Anal ; 243: 116103, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492510

ABSTRACT

Polygonum cuspidatum (P. cuspidatum) is a traditional herbal medicine with a long history and proven efficacy in treating gout. However, due to the complexity of composition and extensive content distribution, the substance basis of its anti-gout effectiveness is still unclear. A strategy was proposed via integrating off-line two-dimensional liquid chromatography (2D-LC) and targeted rapid screening technology based on ultrafiltration-liquid chromatography-mass spectrometry (UF-LC/MS) and on-line high-performance liquid chromatography-2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (HPLC-ABTS) to accomplish high coverage and high throughput screening of anti-gout components from P. cuspidatum. As a result, twenty components were screened from P. cuspidatum extract with both xanthine oxidase (XOD) inhibitory activity and free radical scavenging activity, then were preliminarily identified by high-resolution electrospray ionization-quadrupole-time-of-flight mass spectrometer (ESI-Q-TOF/MS). The screened results were verified by the in vitro assays. Meanwhile, molecular docking further elucidated that the screened bioactive ingredients had favourable binding capabilities with XOD. The performance of this study can achieve high efficiency and high coverage screening of the anti-gout components from P. cuspidatum, which provides methodology and strategy support for the rapid screening of bioactive ingredients from complex medicinal plants.


Subject(s)
Benzothiazoles , Fallopia japonica , Gout , Plants, Medicinal , Sulfonic Acids , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry , Ultrafiltration/methods , Molecular Docking Simulation
10.
Heliyon ; 10(5): e26547, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468924

ABSTRACT

Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.

11.
J Chromatogr A ; 1718: 464725, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38364617

ABSTRACT

Online comprehensive two-dimensional liquid chromatography (online LC x LC) has become increasingly popular. Among the different chromatographic modes that can be combined, hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) are particularly interesting because they offer a high degree of orthogonality. However, this combination remains complex due to the incompatibility of the solvents in the two dimensions. To avoid this problem, it is possible to dilute the first dimension (1D) effluent with (zdilution -1) volumes of a weaker solvent added to one volume of 1D-effluent, where zdilution represents the extent to which the fraction volume has been multiplied. This can be done using either active solvent modulation technology or an additional pump, prior to the second dimension analysis. The objective of this study was to develop theoretical models to predict whether or not dilution can be effective, and, if so, what is the minimum zdilution value required. This approach is based on the calculation of the ratio (called xdilution) between the peak standard deviation due to the injection process and the peak standard deviation in the absence of extra-column dispersion. xdilution was calculated from theoretical relationships and plotted as a function of zdilution, to predict the value required to obtain good peak shapes for the compound of interest. The maximum xdilution value was found to be of the order of 1 for chromatographically acceptable peak shapes. The proposed theoretical approach was experimentally validated on a number of representative small molecules and peptides. Agreement between experimental results and theoretical models was very high, especially for small molecules. Finally, it is shown that this approach helps to predict the most appropriate set of conditions in HILIC x RPLC, depending on the compounds to be separated.


Subject(s)
Chromatography, Reverse-Phase , Peptides , Solvents/chemistry , Chromatography, Reverse-Phase/methods , Models, Theoretical , Hydrophobic and Hydrophilic Interactions
12.
Anal Bioanal Chem ; 416(7): 1733-1744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347251

ABSTRACT

The processing of traditional Chinese medicine (TCM) plays an important role in the clinical application, which usually has the function of "increasing efficiency and reducing toxicity". Polygonum multiflorum (PM) has been reported to induce hepatotoxicity, while it is believed that the toxicity is reduced after processing. Studies have shown that the hepatotoxicity of PM is closely related to the changes in chemical components before and after processing. However, there is no comprehensive investigation on the chemical changes of PM during the processing progress. In this research, we established a comprehensive method to profile both small molecule compounds and polysaccharides from raw and different processed PM samples. In detail, an online two-dimensional liquid chromatography coupled with quadrupole-orbitrap mass spectrometry (2D-LC/Q-Orbitrap MS) was utilized to investigate the small molecules, and a total of 150 compounds were characterized successfully. After multivariate statistical analysis, 49 differential compounds between raw and processed products were screened out. Furthermore, an accurate and comprehensive method for quantification of differential compounds in PM samples was established based on ultra-high performance liquid chromatography/Q-Orbitrap-MS (UHPLC/Q-Orbitrap-MS) within 16 min. In addition, the changes of polysaccharides in different PM samples were analyzed, and it was found that the addition of black beans and steaming times would affect the content and composition of polysaccharides in PM significantly. Our work provided a reference basis for revealing the scientific connotation of the processing technology and increasing the quality control and safety of PM.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Fallopia multiflora , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Fallopia multiflora/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polysaccharides
13.
J Chromatogr A ; 1718: 464722, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38359690

ABSTRACT

Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.


Subject(s)
Immunoglobulin G , Staphylococcal Protein A , Cricetinae , Animals , Cricetulus , Immunoglobulin G/chemistry , Chromatography, Ion Exchange/methods , CHO Cells , Antibodies, Monoclonal , Cations , Cell Culture Techniques , Solvents
14.
Anal Bioanal Chem ; 416(7): 1571-1587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279012

ABSTRACT

Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.


Subject(s)
Chemometrics , Metabolome , Plant Extracts , Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
15.
J Environ Manage ; 351: 120023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181683

ABSTRACT

The widespread presence of organic micropollutants in the environment reflects the inability of traditional wastewater treatment plants to remove them. In this context, advanced oxidation processes (AOPs) have emerged as promising quaternary wastewater treatment technologies since they efficiently degrade recalcitrant components by generating highly reactive free radicals. Nonetheless, the chemical characterization of potentially harmful byproducts is essential to avoid the contamination of natural water bodies with hazardous substances. Given the complexity of wastewater matrices, the implementation of comprehensive analytical methodologies is required. In this work, the simultaneous photoelectrochemical degradation of seven environmentally relevant pharmaceuticals and one metabolite from the EU Watch List 2020/1161 was examined in ultrapure water and simulated wastewater, achieving excellent removal efficiencies (overall >95%) after 180 min treatment. The reactor unit was linked to an online LC sample manager, allowing for automated sampling every 15 min and near real-time process monitoring. Online comprehensive two-dimensional liquid chromatography (LC × LC) coupled with high resolution mass spectrometry (HRMS) was subsequently used to tentatively identify degradation products after photoelectrochemical degradation. Two reversed-phase liquid chromatography (RPLC) columns were used: an SB-C18 column operated with 5 mM ammonium formate at pH 5.8 (1A) and methanol (1B) as the mobile phases in the first dimension and an SB-Aq column using acidified water at pH 3.1 (2A) and acetonitrile (2B) as the mobile phases in the second dimension. This resulted in a five-fold increase in peak capacity compared to one-dimensional LC while maintaining the same total analysis time of 50 min. The LC x LC method allowed the tentative identification of 12 venlafaxine, 7 trimethoprim and 10 ciprofloxacin intermediates. Subsequent toxicity predictions suggested that some of these byproducts were potentially harmful. This study presents an effective hybrid technology for the simultaneous removal of pharmaceuticals from contaminated wastewater matrices and demonstrates how multidimensional liquid chromatography techniques can be applied to better understand the degradation mechanisms after the treatment of micropollutants with AOPs.


Subject(s)
Water Pollutants, Chemical , Water , Water/analysis , Wastewater , Chromatography, Liquid , Mass Spectrometry , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
16.
Talanta ; 269: 125378, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38006732

ABSTRACT

Polymerized impurities in ß-lactam antibiotics can induce allergic reactions, which seriously threaten the health of patients. In order to study the polymerized impurities in cefoxitin sodium for injection, a novel approach based on the use of two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry (2D-LC-TOF MS) was applied. In the 1st dimension, high performance size exclusion chromatography (HPSEC) with a TSK-G2000SWxl column was employed. Column switching was applied for the desalination of the mobile phase used to separate polymerized impurities in the 1st dimension before they were transferred to the 2nd dimension which utilized reversed phase liquid chromatography (RP-LC) and TOF MS for further structural characterization. The structures of four polymerized impurities (which were all previously unknown) in cefoxitin sodium for injection were deduced based on the MS2 data. One novel polymerized impurity (PI-I), with 2H less than the molecular weight of two molecules of cefoxitin (Mr. 852.09), was found to be the most abundant (>50 %) in almost all the samples examined and could be regarded as the marker polymer of cefoxitin sodium for injection. This work also showed the great potential of the 2D-LC-TOF MS approach in structural characterization of unknown impurities separated with a mobile phase containing non-volatile phosphate in the 1st dimension.


Subject(s)
Cefoxitin , Spectrometry, Mass, Electrospray Ionization , Humans , Spectrometry, Mass, Electrospray Ionization/methods , Drug Contamination , Chromatography, Reverse-Phase/methods , Chromatography, Gel , Chromatography, High Pressure Liquid/methods
17.
Proteomics ; 24(3-4): e2200542, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36815320

ABSTRACT

In top-down (TD) proteomics, efficient proteoform separation is crucial to reduce the sample complexity and increase the depth of the analysis. Here, we developed a two-dimensional low pH/low pH reversed-phase liquid chromatography separation scheme for TD proteomics. The first dimension for offline fractionation was performed using a polymeric reversed-phase (PLRP-S) column with trifluoroacetic acid as ion-pairing reagent. The second dimension, a C4 nanocolumn with formic acid as ion-pairing reagent, was coupled online with a high-field asymmetric ion mobility spectrometry (FAIMS) Orbitrap Tribrid mass spectrometer. For both dimensions several parameters were optimized, such as the adaption of the LC gradients in the second dimension according to the elution time (i.e., fraction number) in the first dimension. Avoidance of elevated temperatures and prolonged exposure to acidic conditions minimized cleavage of acid labile aspartate-proline peptide bonds. Furthermore, a concatenation strategy was developed to reduce the total measurement time. We compared our low/low pH with a previously published high pH (C4, ammonium formate)/low pH strategy and found that both separation strategies led to complementary proteoform identifications, mainly below 20 kDa, with a higher number of proteoforms identified by the low/low pH separation. With the optimized separation scheme, more than 4900 proteoforms from 1250 protein groups were identified in Caco-2 cells.


Subject(s)
Chromatography, Reverse-Phase , Proteomics , Humans , Chromatography, Reverse-Phase/methods , Proteomics/methods , Caco-2 Cells , Liquid Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration
18.
Acta Pharmaceutica Sinica ; (12): 202-213, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005432

ABSTRACT

This study aimed to identify the related substances of phloroglucinol injection by two-dimensional liquid chromatography quadrupole time-of-flight mass spectrometry (2D-LC-Q-TOF/MS). The first-dimensional separation was carried out on an HSS T3 (250 mm × 4.6 mm, 5 μm) column by gradient elution using 1.36 g·L-1 potassium dihydrogen phosphate buffer solution (pH adjusted to 3.0 with diluted phosphoric acid) and acetonitrile as the mobile phases. The separated components were then trapped in switch valve tube lines respectively and delivered to the second-dimensional desalting gradient elution which was performed with a BDS C18 (100 mm × 4.6 mm, 2.4 μm) column using 0.1% formic acid and methanol as the mobile phases. After rapid desalting, electrospray-ionization quadrupole time-of-flight high resolution mass spectrometry was used for determining the accurate masses and elemental compositions of the parents and their product ions for both phloroglucinol and its related substance. Structures of the related substances were then figured out by mass spectrometry elucidation, organic reaction mechanism analysis, and/or comparison with reference substances. Under the established analytical conditions, phloroglucinol and its related substances were adequately separated, 17 main related substances were detected and identified in the injection and its stressed samples for the first time. The identification results can provide reference for the quality control of phloroglucinol injection.

19.
Anal Biochem ; 684: 115375, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37926184

ABSTRACT

Therapeutic monitoring of drugs, particularly those with multiple metabolites, can be time-consuming and labor-intensive due to the need for different analytical methods depending on the specific metabolite or matrix of interest. In this study, we employed a heart-cutting 2D-LC separation method based on the coupling of reversed-phase and mixed-mode mechanisms to determine Favipiravir and surrogates of five main metabolites. This approach was applied to serum, plasma, urine, and human peripheral blood mononuclear cells. The method underwent validation to ensure its reliability. The findings highlight the potential of 2D-LC as a practical and efficient approach for therapeutic drug monitoring.


Subject(s)
Leukocytes, Mononuclear , Humans , Reproducibility of Results , Chromatography, Liquid/methods
20.
J Chromatogr A ; 1713: 464565, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38096685

ABSTRACT

Recently, two-dimensional liquid chromatography (2D-LC) has become a popular approach to analyze complex samples. This is partly due to the introduction of commercial 2D-LC systems. In the past, 2D-LC was carried out on in-house developed setups, typically consisting of several switching valves and sample loops as the interface between the two dimensions. Commercial systems usually offer different 2D-LC modes in combination with specialized software to operate the instrument and analyze the data. This makes them highly user-friendly, however, at an increased cost compared to in-house developed setups. This study aims to make a comparison between an in-house developed 2D-LC setup and a commercially available 2D-LC instrument. The comparison is made based on experimental differences, in addition to more general differences, including cost price, flexibility, and ease of operation. Special attention is also paid to the different strategies to deal with the mobile phase incompatibility between the highly orthogonal separation mechanisms considered in this work: hydrophilic interaction liquid chromatography (HILIC) and reversed-phase LC (RPLC). For the commercial 2D-LC instrument, this is done using active solvent modulation (ASM), a valve-based approach allowing the on-line dilution of the effluent eluting from the first dimension column before transfer to the second dimension (2D) column. For the in-house developed setup, a combination of restriction capillaries and a trap column is used. Using a sample of 28 compounds with a large polarity range, peak shapes and recoveries of the 2D-chromatograms are compared for both setups. For early eluting compounds, the selective comprehensive approach, currently only possible on the commercial 2D-LC instrument, results in the best peak shapes and recoveries, however, at the cost of an increased analysis time. In general, depending on the analytical goal (single heart-cut versus full-comprehensive 2D-LC), an in-house developed system can be satisfactory for the analysis of specific target compounds/samples. For more complex problems, it can be interesting to use a more specialized commercial 2D-LC instrument. Overall, this comparison study provides advice for analytical scientists, who are considering to use 2D-LC, on the type of equipment to consider, depending on the needs of their particular applications.


Subject(s)
Chromatography, Reverse-Phase , Software , Chromatography, Liquid/methods , Solvents/chemistry , Hydrophobic and Hydrophilic Interactions , Chromatography, Reverse-Phase/methods
SELECTION OF CITATIONS
SEARCH DETAIL