Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
J Imaging Inform Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862851

ABSTRACT

3D data from high-resolution volumetric imaging is a central resource for diagnosis and treatment in modern medicine. While the fast development of AI enhances imaging and analysis, commonly used visualization methods lag far behind. Recent research used extended reality (XR) for perceiving 3D images with visual depth perception and touch but used restrictive haptic devices. While unrestricted touch benefits volumetric data examination, implementing natural haptic interaction with XR is challenging. The research question is whether a multisensory XR application with intuitive haptic interaction adds value and should be pursued. In a study, 24 experts for biomedical images in research and medicine explored 3D medical shapes with 3 applications: a multisensory virtual reality (VR) prototype using haptic gloves, a simple VR prototype using controllers, and a standard PC application. Results of standardized questionnaires showed no significant differences between all application types regarding usability and no significant difference between both VR applications regarding presence. Participants agreed to statements that VR visualizations provide better depth information, using the hands instead of controllers simplifies data exploration, the multisensory VR prototype allows intuitive data exploration, and it is beneficial over traditional data examination methods. While most participants mentioned manual interaction as the best aspect, they also found it the most improvable. We conclude that a multisensory XR application with improved manual interaction adds value for volumetric biomedical data examination. We will proceed with our open-source research project ISH3DE (Intuitive Stereoptic Haptic 3D Data Exploration) to serve medical education, therapeutic decisions, surgery preparations, or research data analysis.

2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 541-545, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864142

ABSTRACT

OBJECTIVE: To evaluate the outcome of Augmented reality technology in the recognizing of oral and maxillofacial anatomy. METHODS: This study was conducted on the undergraduate students in Peking University School of Stomatology who were learning oral and maxillofacial anatomy. The image data were selected according to the experiment content, and the important blood vessels and bone tissue structures, such as upper and lower jaws, neck arteries and veins were reconstructed in 3D(3-dimensional) by digital software to generate experiment models, and the reconstructed models were encrypted and stored in the cloud. The QR (quick response) code corresponding to the 3D model was scanned by a networked mobile device to obtain augmented reality images to assist experimenters in teaching and subjects in recognizing. Augmented reality technology was applied in both the theoretical explanation and cadaveric dissection respectively. Subjects' feedback was collected in the form of a post-class questionnaire to evaluate the effectiveness of augmented reality technology-assisted recognizing. RESULTS: In the study, 83 undergraduate students were included as subjects in this study. Augmented reality technology could be successfully applied in the recognizing of oral and maxillofacial anatomy. All the subjects could scan the QR code through a connected mobile device to get the 3D anatomy model from the cloud, and zoom in/out/rotate the model on the mobile. Augmented reality technology could provide personalized 3D model, based on learners' needs and abilities. The results of likert scale showed that augmented reality technology was highly recognized by the students (9.19 points), and got high scores in terms of forming a three-dimensional sense and stimulating the enthusiasm for learning (9.01 and 8.85 points respectively). CONCLUSION: Augmented reality technology can realize the three-dimensional visualization of important structures of oral and maxillofacial anatomy and stimulate students' enthusiasm for learning. Besides, it can assist students in building three-dimensional space imagination of the anatomy of oral and maxillofacial area. The application of augmented reality technology achieves favorable effect in the recognizing of oral and maxillofacial anatomy.


Subject(s)
Augmented Reality , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Anatomy/education , Mouth/anatomy & histology , Software
3.
Clin Anat ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938222

ABSTRACT

Design thinking (DT) is a five-stage process (empathize, define, ideate, prototype, and test) that guides the creation of user-centered solutions to complex problems. DT is in common use outside of science but has rarely been applied to anatomical education. The use of DT in this study identified the need for flexible access to anatomical specimens outside of the anatomy laboratory and guided the creation of a digital library of three-dimensional (3D) anatomical specimens (3D Anatomy Viewer). To test whether the resource was fit for purpose, a mixed-methods student evaluation was undertaken. Student surveys (n = 46) were employed using the system usability scale (SUS) and an unvalidated acceptability questionnaire. These verified that 3D Anatomy Viewer was usable (SUS of 72%) and acceptable (agreement range of 77%-93% on all Likert-type survey statements, Cronbach's alpha = 0.929). Supplementary interviews (n = 5) were analyzed through content analysis and revealed three main themes: (1) a credible online supplementary learning resource; (2) learning anatomy with 3D realism and interactivity; (3) user recommendations for expanding the number of anatomical models, test questions, and gamification elements. These data demonstrate that a DT framework can be successfully applied to anatomical education for creation of a practical learning resource. Anatomy educators should consider employing a DT framework where student-centered solutions to learner needs are required.

4.
Sensors (Basel) ; 24(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38931546

ABSTRACT

The growing interest in building data management, especially the building information model (BIM), has significantly influenced urban management, materials supply chain analysis, documentation, and storage. However, the integration of BIM into 3D GIS tools is becoming more common, showing progress beyond the traditional problem. To address this, this study proposes data transformation methods involving mapping between three domains: industry foundation classes (IFC), city geometry markup language (CityGML), and web ontology framework (OWL)/resource description framework (RDF). Initially, IFC data are converted to CityGML format using the feature manipulation engine (FME) at CityGML standard's levels of detail 4 (LOD4) to enhance BIM data interoperability. Subsequently, CityGML is converted to the OWL/RDF diagram format to validate the proposed BIM conversion process. To ensure integration between BIM and GIS, geometric data and information are visualized through Cesium Ion web services and Unreal Engine. Additionally, an RDF graph is applied to analyze the association between the semantic mapping of the CityGML standard, with Neo4j (a graph database management system) utilized for visualization. The study's results demonstrate that the proposed data transformation methods significantly improve the interoperability and visualization of 3D city models, facilitating better urban management and planning.

5.
Biomed Tech (Berl) ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38700703

ABSTRACT

OBJECTIVES: Surgery planning for liver tumour is carried out using contrast enhanced computed tomography (CECT) images to determine the optimal resection strategy and to assess the volume of liver and tumour. Current surgery planning tools interpret even the functioning liver cells present within the tumour boundary as tumour. Plain CT images provide inadequate information for treatment planning. This work attempts to address two shortcomings of existing surgery planning tools: (i) to delineate functioning liver cells from the non-functioning tumourous tissues within the tumour boundary and (ii) to provide 3D visualization and actual tumour volume from the plain CT images. METHODS: All slices of plain CT images containing liver are enhanced by means of fuzzy histogram equalization in Non-Subsampled Contourlet Transform (NSCT) domain prior to 3D reconstruction to clearly delineate liver, non-functioning tumourous tissues and functioning liver cells within the tumour boundary. The 3D analysis from plain and CECT images was carried out on five types of liver lesions viz. HCC, metastasis, hemangioma, cyst, and abscess along with normal liver. RESULTS: The study resulted in clear delineation of functional liver tissues from non-functioning tumourous tissues within the tumour boundary from CECT as well as plain CT images. The volume of liver calculated using the proposed approach is found comparable with that obtained using Myrian-XP, a currently followed surgery planning tool in clinical practice. CONCLUSIONS: The obtained results from plain CT images will undoubtedly provide valuable diagnostic assistance and surgery planning even for the subset of patients for whom CECT acquisition is not advisable.

6.
Int J Ophthalmol ; 17(3): 577-582, 2024.
Article in English | MEDLINE | ID: mdl-38721510

ABSTRACT

AIM: To determine the teaching effects of a real-time three dimensional (3D) visualization system in the operating room for early-stage phacoemulsification training. METHODS: A total of 10 ophthalmology residents of the first-year postgraduate were included. All the residents were novices to cataract surgery. Real-time cataract surgical observations were performed using a custom-built 3D visualization system. The training lasted 4wk (32h) in all. A modified International Council of Ophthalmology's Ophthalmology Surgical Competency Assessment Rubric (ICO-OSCAR) containing 4 specific steps of cataract surgery was applied. The self-assessment (self) and expert-assessment (expert) were performed through the microsurgical attempts in the wet lab for each participant. RESULTS: Compared with pre-training assessments (self 3.2±0.8, expert 2.5±0.6), the overall mean scores of post-training (self 5.2±0.4, expert 4.7±0.6) were significantly improved after real-time observation training of 3D visualization system (P<0.05). Scores of 4 surgical items were significantly improved both self and expert assessment after training (P<0.05). CONCLUSION: The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques. It is a useful tool to improve teaching efficiency of surgical education.

7.
BMC Bioinformatics ; 25(1): 201, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802748

ABSTRACT

BACKGROUND: Cancers are spatially heterogenous, thus their clonal evolution, especially following anti-cancer treatments, depends on where the mutated cells are located within the tumor tissue. For example, cells exposed to different concentrations of drugs, such as cells located near the vessels in contrast to those residing far from the vasculature, can undergo a different evolutionary path. However, classical representations of cell lineage trees do not account for this spatial component of emerging cancer clones. Here, we propose routines to trace spatial and temporal clonal evolution in computer simulations of the tumor evolution models. RESULTS: The LinG3D (Lineage Graphs in 3D) is an open-source collection of routines (in MATLAB, Python, and R) that enables spatio-temporal visualization of clonal evolution in a two-dimensional tumor slice from computer simulations of the tumor evolution models. These routines draw traces of tumor clones in both time and space, and may include a projection of a selected microenvironmental factor, such as the drug or oxygen distribution within the tumor, if such a microenvironmental factor is used in the tumor evolution model. The utility of LinG3D has been demonstrated through examples of simulated tumors with different number of clones and, additionally, in experimental colony growth assay. CONCLUSIONS: This routine package extends the classical lineage trees, that show cellular clone relationships in time, by adding the space component to show the locations of cellular clones within the 2D tumor tissue patch from computer simulations of tumor evolution models.


Subject(s)
Clonal Evolution , Neoplasms , Humans , Neoplasms/genetics , Computer Simulation , Software
8.
Sci Rep ; 14(1): 11899, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789536

ABSTRACT

The construction of underground cavern groups represents a particularly challenging task in current subsurface engineering due to a multitude of variable and often unknown factors, including diverse geological conditions. This study introduces a four-dimensional spatiotemporal model and formulates a dynamic safety information model for these underground systems. Developed using C# and Python, the model integrates the finite element analysis software ABAQUS and Microsoft SQL Server database. The framework allows for real-time visual management of monitoring data, dynamic coupling of construction phases with safety metrics, and continual updates correlating with construction progress. The theoretical findings offer valuable insights for enhancing the safety and efficiency of underground cavern group construction while also supplying methods for real-time safety feedback and control throughout the construction process.

9.
Methods Mol Biol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778008

ABSTRACT

Telocytes, distinctive interstitial cells, have recently emerged as crucial components of the stem-cell niche in the intestine. Notably, telocytes are distinguished by their extremely long cellular protrusions extending hundreds of microns from the cell body, forming an interconnected network along the intestinal crypt villus axis. Due to these unique cellular characteristics, there is a need for tailored working protocols to effectively characterize and target telocytes. Here, we outline advanced and progressive protocols for tissue fixation, dissociation, visualization, and the use of tamoxifen-induced transgenic mouse models to specifically target telocytes.

10.
Chemosphere ; 359: 142378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763392

ABSTRACT

Soil potentially toxic elements (PTEs) pollution of contaminated sites has become a global environmental issue. However, given that previous studies mostly focused on pollution assessment in surface soils, the current status and environmental risks of potentially toxic elements in deeper soils remain unclear. The present study aims to cognize distribution characteristics and spatial autocorrelation, pollution levels, and risk assessment in a stereoscopic environment for soil PTEs through 3D visualization techniques. Pollution levels were assessed in an integrated manner by combining the geoaccumulation index (Igeo), the integrated influence index of soil quality (IICQs), and potential ecological hazard index. Results showed that soil environment at the site was seriously threatened by PTEs, and Cu and Cd were ubiquitous and the predominant pollutants in the study area. The stratigraphic models and pollution plume simulation revealed that pollutants show a decreasing trend with the deepening of the soil layer. The ranking of contamination soil volume is as follows: Cu > Cd > Zn > As > Pb > Cr > Ni. According to the IICQs evaluation, this region was subject to multiple PTE contamination, with more than 60% of the area becoming seriously and highly polluted. In addition, the ecological hazard model revealed the existence of substantial ecological hazards in the soils of the site. The integrated potential ecological risk index (RI) indicated that 45.7%, 10.13%, and 4.15% of the stereoscopic areas were in considerable, high, and very high risks, respectively. The findings could be used as a theoretical reference for applying multiple methods to integrate evaluation through 3D visualization analysis in the assessment and remediation of PTE-contaminated soils.


Subject(s)
Environmental Monitoring , Metals, Heavy , Mining , Soil Pollutants , Soil , Soil Pollutants/analysis , Environmental Monitoring/methods , Soil/chemistry , Risk Assessment/methods , Metals, Heavy/analysis , Environmental Pollution/analysis , Cities
11.
Cureus ; 16(3): e55395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38562360

ABSTRACT

Blunt carotid artery injury (BCI) poses a rare yet severe threat following vascular trauma, often leading to significant morbidity and mortality. We present a case of a 33-year-old male who suffered complete thrombotic occlusion of the right common carotid artery (CCA) following a workplace accident. Clinical evaluation revealed profound neurological deficits, prompting multidisciplinary surgical intervention guided by the Denver criteria (Grade I - disruption inside the vessel that results in a narrowing of the lumen by less than 25%; Grade II - dissection or intramural hematoma causing greater than 25% stenosis; Grade III - comprises pseudoaneurysm formation; Grade IV - causes total vessel occlusion; Grade V - describes vessel transection with extravasation). Surgical exploration unveiled extensive arterial damage, necessitating thrombectomy, primary repair, and double-layered patch angioplasty using an autologous saphenous vein. Postoperative recovery was uneventful, with the restoration of pulsatile blood flow confirmed by Doppler ultrasound. Three-month follow-up demonstrated patent arterial reconstruction and improved cerebral perfusion, despite the persistent neurological deficits. Our case underscores the challenges in diagnosing and managing BCI, advocating for a tailored approach based on injury severity and neurological status. While conservative management remains standard, surgical intervention offers a viable option in select cases, particularly those with complete vessel occlusion and neurological compromise. Long-term surveillance is imperative to assess the durability of arterial reconstruction and monitor for recurrent thromboembolic events. Further research is warranted to refine management algorithms and elucidate optimal treatment strategies in this rare but critical vascular pathology.

12.
BMC Med Educ ; 24(1): 461, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671399

ABSTRACT

BACKGROUND: 3D visualization technology applies computers and other devices to create a realistic virtual world for individuals with various sensory experiences such as 3D vision, touch, and smell to gain a more effective understanding of the relationships between real spatial structures and organizations. The purpose of this study was to comprehensively evaluate the effectiveness of 3D visualization technology in human anatomy teaching/training and explore the potential factors that affect the training effects to better guide the teaching of classroom/laboratory anatomy. METHODS: We conducted a meta-analysis of randomized controlled studies on teaching human anatomy using 3D visualization technology. We extensively searched three authoritative databases, PubMed, Web of Science, and Embase; the main outcomes were the participants' test scores and satisfaction, while the secondary outcomes were time consumption and enjoyment. Heterogeneity by I² was statistically determined because I²> 50%; therefore, a random-effects model was employed, using data processing software such as RevMan, Stata, and VOSviewer to process data, apply standardized mean difference and 95% confidence interval, and subgroup analysis to evaluate test results, and then conduct research through sensitivity analysis and meta-regression analysis. RESULTS: Thirty-nine randomized controlled trials (2,959 participants) were screened and included in this study. The system analysis of the main results showed that compared with other methods, including data from all regions 3D visualization technology moderately improved test scores as well as satisfaction and enjoyment; however, the time that students took to complete the test was not significantly reduced. Meta-regression analysis also showed that regional factorsaffected test scores, whereas other factors had no significant impact. When the literature from China was excluded, the satisfaction and happiness of the 3D virtual-reality group were statistically significant compared to those of the traditional group; however, the test results and time consumption were not statistically significant. CONCLUSION: 3D visualization technology is an effective way to improve learners' satisfaction with and enjoyment of human anatomical learning, but it cannot reduce the time required for testers to complete the test. 3D visualization technology may struggle to improve the testers' scores. The literature test results from China are more prone to positive results and affected by regional bias.


Subject(s)
Anatomy , Imaging, Three-Dimensional , Students, Medical , Humans , Anatomy/education , Students, Medical/psychology , Internship and Residency , Randomized Controlled Trials as Topic , Virtual Reality , Regression Analysis , Computer-Assisted Instruction/methods
13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 104-110, 2024 Feb 01.
Article in English, Chinese | MEDLINE | ID: mdl-38475958

ABSTRACT

OBJECTIVES: With the assistance of 3D visualization and real-time navigation technologies, the tumors in the parapharyngeal and lateral skull base should be removed through oral the approach with endoscopy. METHODS: The preoperative CT data of eight patients with parapharyngeal or lateral skull base soft tissue tumors were modeled, and the anatomical position relationship between the tumor and surrounding blood vessels and other important structures was reconstructed using 3D visualization technology, and preoperative design was performed. The intraoperative oral approach and real-time navigation guidance were adopted in the endoscopic resection of soft tissue tumors in the parapharyngeal and lateral skull base, and the clinical application value of this method was evaluated. RESULTS: The blood loss during the operation was controlled within 150 mL, and the average blood loss was approximately 125 mL. The incidence of postoperative complications was low, and patients could recover well through functional training. The oral approach did not leave any wounds nor scars on the patient's facial skin after the operation and had no effect on the patient's appearance. CONCLUSIONS: The combination of 3D visualization technology, intraoperative real-time navigation, and endoscopy provides a beautiful, safe, and minimally invasive surgical method for patients with parapharyngeal or lateral skull base tumors.


Subject(s)
Skull Base Neoplasms , Soft Tissue Neoplasms , Humans , Skull Base Neoplasms/surgery , Imaging, Three-Dimensional , Endoscopy/methods , Skull Base/surgery
14.
Biomed Eng Online ; 23(1): 31, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468262

ABSTRACT

BACKGROUND: Ultrasound three-dimensional visualization, a cutting-edge technology in medical imaging, enhances diagnostic accuracy by providing a more comprehensive and readable portrayal of anatomical structures compared to traditional two-dimensional ultrasound. Crucial to this visualization is the segmentation of multiple targets. However, challenges like noise interference, inaccurate boundaries, and difficulties in segmenting small structures exist in the multi-target segmentation of ultrasound images. This study, using neck ultrasound images, concentrates on researching multi-target segmentation methods for the thyroid and surrounding tissues. METHOD: We improved the Unet++ to propose PA-Unet++ to enhance the multi-target segmentation accuracy of the thyroid and its surrounding tissues by addressing ultrasound noise interference. This involves integrating multi-scale feature information using a pyramid pooling module to facilitate segmentation of structures of various sizes. Additionally, an attention gate mechanism is applied to each decoding layer to progressively highlight target tissues and suppress the impact of background pixels. RESULTS: Video data obtained from 2D ultrasound thyroid serial scans served as the dataset for this paper.4600 images containing 23,000 annotated regions were divided into training and test sets at a ratio of 9:1, the results showed that: compared with the results of U-net++, the Dice of our model increased from 78.78% to 81.88% (+ 3.10%), the mIOU increased from 73.44% to 80.35% (+ 6.91%), and the PA index increased from 92.95% to 94.79% (+ 1.84%). CONCLUSIONS: Accurate segmentation is fundamental for various clinical applications, including disease diagnosis, treatment planning, and monitoring. This study will have a positive impact on the improvement of 3D visualization capabilities and clinical decision-making and research in the context of ultrasound image.


Subject(s)
Imaging, Three-Dimensional , Thyroid Gland , Thyroid Gland/diagnostic imaging , Research Design , Technology , Image Processing, Computer-Assisted
15.
Naturwissenschaften ; 111(1): 8, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329546

ABSTRACT

Bioeroded carbonate clasts from a Pliocene shallow-marine succession of Almería (SE Spain, Betic Cordillera) were analysed with computed tomography (CT). This revealed the detailed 3D architecture of bioerosion structures hidden within and allowed for their ichnotaxonomic identification (14 ichnospecies of 5 ichnogenera) and quantification. Borings are produced by worms, mostly polychaetes and sipunculids dominated, followed by bivalves and lastly by sponges. The crosscutting relationship between the borings and their preservation characteristics points to a complex colonization history of the clasts with repeated bioerosive episodes interrupted by physical disturbances, including overturning and abrasion of the clasts followed by their recolonization. Our findings facilitated paleoenvironmental interpretation and can be compared to analogous modern-day ecological succession. The sharp dominance of worm borings - early successional species - may be related to frequent, periodic, physical disturbance that possibly prevented the cobble-dwelling macroboring community from being overtaken by sponges - late successional taxa. CT, hand sample and petrographic observations detected, aside from borings, other irregularly shaped pores which are interpreted to be generated by diagenetic processes including dolomitization, silicification and dissolution, representing an intraparticle moldic and moldic enlarged porosity. Boring porosity crosscutting the diagenetically altered grains suggests the later occurrence of bioerosion processes. Irregular shapes ranging from roughly spherical, elongate sub-polyhedral to amoeboid resemble morphologies produced by modern sponges. Moldic pores possibly acted as primary domiciles for boring sponges, which infested, altered and enlarged pre-existing pores as they grew (as happens in the modern), providing an example of how biological and non-biological processes interacted and together influenced endolithic palaeocommunity development.


Subject(s)
Tomography, X-Ray Computed , Spain
16.
Cureus ; 16(1): e51769, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38322062

ABSTRACT

Pancreaticojejunostomy, a critical step in pancreatic surgery, has significantly evolved surgical approaches, including open, laparoscopic, and robotic techniques. This comprehensive review explores open surgery's historical success, advantages, and disadvantages, emphasizing surgeons' accrued experience and familiarity with this approach. However, heightened morbidity and prolonged recovery associated with open pancreaticojejunostomy underscore the need for a nuanced evaluation of alternatives. The advent of robotic-assisted surgery introduces a paradigm shift in pancreatic procedures. Enhanced dexterity, facilitated by wristed instruments, allows intricate suturing and precise tissue manipulation crucial in pancreatic surgery. Three-dimensional visualization augments surgeon perception, improving spatial orientation and anastomotic alignment. Moreover, the potential for a reduced learning curve may enhance accessibility, especially for surgeons transitioning from open techniques. Emerging technologies, including advanced imaging modalities and artificial intelligence, present promising avenues for refining both open and minimally invasive approaches. The ongoing pursuit of optimal outcomes mandates a judicious consideration of surgical techniques, incorporating technological advancements to navigate challenges and enhance patient care in pancreaticojejunostomy.

17.
J Surg Educ ; 81(4): 597-606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38388310

ABSTRACT

OBJECTIVE: Studying liver anatomy can be challenging for medical students and surgical residents due to its complexity. Three-dimensional visualization technology (3DVT) allows for a clearer and more precise view of liver anatomy. We sought to assess how 3DVT can assist students and surgical residents comprehend liver anatomy. DESIGN: Data from 5 patients who underwent liver resection for malignancy at our institution between September 2020 and April 2022 were retrospectively reviewed and selected following consensus among the investigators. Participants were required to complete an online survey to investigate their understanding of tumor characteristics and vascular variations based on patients' computed tomography (CT) and 3DVT. SETTING: The study was carried out at the General and Hepato-Biliary Surgery Department of the University of Verona. PARTICIPANTS: Among 32 participants, 13 (40.6%) were medical students, and 19 (59.4%) were surgical residents. RESULTS: Among 5 patients with intrahepatic lesions, 4 patients (80.0%) had at least 1 vascular variation. Participants identified number and location of lesions more correctly when evaluating the 3DVT (84.6% and 80.9%, respectively) compared with CT scans (61.1% and 64.8%, respectively) (both p ≤ 0.001). The identification of any vascular variations was more challenging using the CT scans, with only 50.6% of correct answers compared with 3DVT (72.2%) (p < 0.001). Compared with CT scans, 3DVT led to a 23.5%, 16.1%, and 21.6% increase in the correct definition of number and location of lesions, and vascular variations, respectively. 3DVT allowed for a decrease of 50.8 seconds (95% CI 23.6-78.0) in the time needed to answer the questions. All participants agreed on the usefulness of 3DVT in hepatobiliary surgery. CONCLUSIONS: The 3DVT facilitated a more precise preoperative understanding of liver anatomy, tumor location and characteristics.


Subject(s)
Internship and Residency , Liver Neoplasms , Students, Medical , Humans , Retrospective Studies , Comprehension , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Imaging, Three-Dimensional/methods
18.
Emerg Radiol ; 31(2): 269-276, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236521

ABSTRACT

Non-traumatic thoracic aorta emergencies are acute conditions associated with substantial morbidity and mortality. In the emergency setting, timely detection of aortic injury through radiological imaging is crucial for prompt treatment planning and favorable patient outcomes. 3D cinematic rendering (CR), a novel rendering algorithm for computed tomography (CT) image processing, allows for life-like visualization of spatial details and contours of highly complex anatomic structures such as the thoracic aorta and its vessels, generating a photorealistic view that not just adds to diagnostic confidence, but is especially useful for non-radiologists, including surgeons and emergency medicine physicians. In this pictorial review, we demonstrate the utility of CR in the setting of non-traumatic thoracic aorta emergencies through 10 cases that were processed at a standalone 3D CR station at the time of presentation, including its role in diagnosis and management.


Subject(s)
Aorta, Thoracic , Vascular System Injuries , Humans , Aorta, Thoracic/diagnostic imaging , Emergencies , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods
19.
Fluids Barriers CNS ; 21(1): 9, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268040

ABSTRACT

The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.


Subject(s)
Cerebral Ventricles , Choroid Plexus , Animals , Mice , Choroid Plexus/diagnostic imaging , X-Ray Microtomography , Rhombencephalon/diagnostic imaging , Brain
20.
J Anat ; 244(1): 133-141, 2024 01.
Article in English | MEDLINE | ID: mdl-37688452

ABSTRACT

Anatomical variations of the right hepatic vein, especially large variant right hepatic veins (≥5 mm), have important clinical implications in liver transplantation and resection. This study aimed to evaluate anatomical variations of the right hepatic vein using quantitative three-dimensional visualization analysis. Computed tomography images of 650 patients were retrospectively analyzed, and three-dimensional visualization was applied using the derived data to analyze large variant right hepatic veins. The proportion of the large variant right hepatic vein was 16.92% (110/650). According to the location and number of the variant right hepatic veins, the configuration of the right hepatic venous system was divided into seven subtypes. The length of the retrohepatic inferior vena cava had a positive correlation with the diameter of the right hepatic vein (rs = 0.266, p = 0.001) and the variant right hepatic veins (rs = 0.211, p = 0.027). The diameter of the right hepatic vein was positively correlated with that of the middle hepatic vein (rs = 0.361, p < 0.001), while it was inversely correlated with that of the variant right hepatic veins (rs = -0.267, p = 0.005). The right hepatic vein diameter was positively correlated with the drainage volume (rs = 0.489, p < 0.001), while the correlation with the variant right hepatic veins drainage volume was negative (rs = -0.460, p < 0.001). The number of the variant right hepatic veins and their relative diameters were positively correlated (p < 0.001). The volume and percentage of the drainage area of the right hepatic vein decreased significantly as the number of the variant right hepatic vein increased (p < 0.001). The findings of this study concerning the variations of the hepatic venous system may be useful for the surgical planning of liver resection or transplantation.


Subject(s)
Hepatic Veins , Liver Transplantation , Humans , Hepatic Veins/diagnostic imaging , Hepatic Veins/anatomy & histology , Hepatic Veins/surgery , Retrospective Studies , Vena Cava, Inferior/diagnostic imaging , Hepatectomy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...