Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 276: 126237, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776769

ABSTRACT

Lysergic acid diethylamide (LSD) and two phenethylamine classes (NBOHs and NBOMes) are the main illicit drugs found in seized blotter papers. The preliminary identification of these substances is of great interest for forensic analysis. In this context, this work constitutes the inaugural demonstration of an efficient methodology for the selective detection of LSD, NBOHs, and NBOMes, utilizing a fully 3D-printed electrochemical double cell (3D-EDC). This novel 3D-EDC enables the use of two working electrodes and/or two supporting electrolytes (at different pHs) in the same detection system, with the possibility of shared or individual auxiliary and pseudo-reference electrodes. Thus, the selective voltammetric detection of these substances is proposed using two elegant strategies: (i) utilizing the same 3D-EDC platform with two working electrodes (boron-doped diamond (BDD) and 3D-printed graphite), and (ii) employing two pH levels (4.0 and 12.0) with 3D-printed graphite electrode. This comprehensive framework facilitates a fast, robust, and uncomplicated electrochemical analysis. Moreover, this configuration enables a rapid and sensitive detection of LSD, NBOHs, and NBOMes in seized samples, and can also provide quantitative analysis. The proposed method showed good stability of the electrochemical response with RSD <9 % for Ip and <5 % for Ep, evaluating all oxidation processes observed for studied analytes (n = 7) at two pH levels, using the same and different (n = 3) working electrodes. It demonstrates a broad linear range (20-100 and 20-70 µmol L-1) and a low LOD (1.0 µmol L-1) for quantification of a model molecule (LSD) at the two pHs studied. Hence, the 3D-EDC combined with voltammetric techniques using BDD and 3D-printed graphite electrodes on the same platform, or only with this last sensor at two pH values, provide a practical and robust avenue for preliminary identification of NBOHs, NBOMes, and LSD. This method embodies ease, swiftness, cost-efficiency, robustness, and selectivity as an on-site screening tool for forensic analysis.


Subject(s)
Electrochemical Techniques , Electrodes , Lysergic Acid Diethylamide , Printing, Three-Dimensional , Lysergic Acid Diethylamide/analogs & derivatives , Lysergic Acid Diethylamide/chemistry , Lysergic Acid Diethylamide/analysis , Electrochemical Techniques/methods , Phenethylamines/analysis , Illicit Drugs/analysis , Humans , Limit of Detection , Graphite/chemistry
2.
Food Chem ; 406: 135038, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36463603

ABSTRACT

Pesticides are heavily employed compounds protecting crops, however, these compounds can be extremely harmful to human health. Once the monitoring of pesticides in foods is of great importance, in this work we propose a ready-to-use electrochemical sensor made with 3D printing technology, capable of detecting paraquat and carbendazim in sequential analysis. The proposed electrodes are lab-made and of easy obtention, composed of graphite on a polylactic acid matrix, and provided great results for the analysis of paraquat and carbendazim in honey, milk, juice, and water samples. The sequential analysis of paraquat and carbendazim was proposed, providing optimal analysis of both compounds individually when both are present in a mixture. Limits of detection of 0.01 and 0.03 µmol/L for paraquat and carbendazim, respectively. Recovery tests attested to the suitability of the method, ranging from 94.5 to 113.7 %, and the suitability of 3D printing for environmental and food samples analysis.


Subject(s)
Graphite , Pesticides , Humans , Paraquat/analysis , Graphite/chemistry , Benzimidazoles , Electrodes , Pesticides/analysis , Electrochemical Techniques/methods
3.
Mikrochim Acta ; 189(2): 57, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013813

ABSTRACT

Low oxidation stability is the main drawback of biodiesels and biokerosenes that is overcome by using antioxidants, which can be combined due to synergistic effects. This paper demonstrates that 3D-printed electrochemical devices can be applied to biofuel electroanalysis, including the monitoring of oxidation stability by quantifying the antioxidant content in biofuels. Fabrication requires 3D-printed acrylic templates at which a polylactic acid (PLA) filament with conducting carbon-black filling sensors is extruded by a 3D pen. The antioxidants butyl hydroxyanisole (BHA) and tert-butylhydroquinone (TBHQ) are the most employed additives in biodiesel production, and thus, their electrochemical behavior was investigated; 2,6-ditertbutylphenol (2,6-DTBP) was included in this investigation because it is commonly added to biokerosenes. The electrochemical surface treatment of the 3D-printed electrodes improved the current responses of all antioxidants; however, the electrochemical oxidation of TBHQ was clearly more affected by an electrocatalytic action shifting its oxidation towards less positive potentials (~200 mV), which resulted in a better separation of TBHQ and BHA oxidation peaks (+0.4 and +0.6 V vs Ag|AgCl, respectively). The oxidation of 2,6-DTBP occurred at more positive potentials (+1.2 V vs Ag|AgCl). The simultaneous determination of TBHQ and BHA by differential-pulse voltammetry resulted in linear responses in the range 0.5 and 175 µmol L-1 with limits of detection and quantification of 0.15 µmol L-1 and 0.5 µmol L-1, respectively. The presence of Fe3+, Cu2+, Pb2+, Mn2+, Cd2+, and Zn2+, even in high concentrations, did not interfere in the determination of TBHQ and BHA. The determination of 2,6-DTBP in biokerosene was achieved by cyclic voltammetry. All relative standard deviations (RSD) were lower than 6.0 %, indicating adequate precision of the methods. Spiked biofuel samples were analyzed (after dilution in electrolyte) and recovery values between 85 and 120% were obtained, which indicates absence of sample matrix effects.


Subject(s)
Antioxidants/chemistry , Biofuels/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Polyesters/chemistry , Molecular Structure , Printing, Three-Dimensional , Soot
4.
Mikrochim Acta ; 188(11): 388, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34668076

ABSTRACT

For the first time the development of an electrochemical method for simultaneous quantification of Zn2+ and uric acid (UA) in sweat is described using an electrochemically treated 3D-printed working electrode. Sweat analysis can provide important information about metabolites that are valuable indicators of biological processes. Improved performance of the 3D-printed electrode was achieved after electrochemical treatment of its surface in an alkaline medium. This treatment promotes the PLA removal (insulating layer) and exposes carbon black (CB) conductive sites. The pH and the square-wave anodic stripping voltammetry technique were carefully adjusted to optimize the method. The peaks for Zn2+ and UA were well-defined at around - 1.1 V and + 0.45 V (vs. CB/PLA pseudo-reference), respectively, using the treated surface under optimized conditions. The calibration curve showed a linear range of 1 to 70 µg L-1 and 1 to 70 µmol L-1 for Zn2+ and UA, respectively. Relative standard deviation values were estimated as 4.8% (n = 10, 30 µg L-1) and 6.1% (n = 10, 30 µmol L-1) for Zn2+ and UA, respectively. The detection limits for Zn2+ and UA were 0.10 µg L-1 and 0.28 µmol L-1, respectively. Both species were determined simultaneously in real sweat samples, and the achieved recovery percentages were between 95 and 106% for Zn2+ and 82 and 108% for UA.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Sweat/chemistry , Uric Acid/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL