Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 699
Filter
1.
Clin Neuroradiol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017672

ABSTRACT

BACKGROUND: Maximum wall shear stress (maxWSS) points of unruptured cerebral aneurysms (UCAs) may cause wall remodeling leading to rupture. We characterized maxWSS points and their inherent intra-aneurysmal flow structures in a sizable cohort of saccular UCAs using four-dimensional (4D) flow magnetic resonance imaging (MRI). METHODS: After contrast administration, 50 saccular UCAs were subjected to 4D flow MRI using a 1.5 T MRI scanner. Post-processing of obtained data was performed using commercially available software. The maxWSS points and maxWSS values were evaluated. The maxWSS values were statistically compared between aneurysm groups. RESULTS: The maxWSS point was located on the aneurysm apex in 9 (18.0%), body in 2 (4.0%), and neck in 39 (78.0%) UCAs. The inherent intra-aneurysmal flow structure of the maxWSS point was an inflow zone in 34 (68.0%) UCAs, an inflow jet in 8 (16.0%), and an impingement zone in 8 (16.0%). The maxWSS point on the neck had significantly higher maxWSS values than those points on the other wall areas (P = 0.008). The maxWSS values of the maxWSS points on the apex and on the impingement zone were not significantly different compared with those of the other maxWSS points. CONCLUSION: The maxWSS points existed preferentially on the aneurysmal neck adjacent to the inflow zone with higher maxWSS values. The maxWSS points existed occasionally on the aneurysmal apex adjacent to the impingement zone. 4D flow MRI may be helpful to discriminate saccular UCAs with higher-risk maxWSS points that can cause wall remodeling leading to rupture.

2.
Quant Imaging Med Surg ; 14(7): 4348-4361, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022224

ABSTRACT

Background: Ischemic stroke, which has a high incidence, disability, and mortality rate, is mainly caused by carotid atherosclerotic plaque. The difference in the geometric structures of the carotid arteries inevitably leads to the variability in the local hemodynamics, which plays a key role in the formation of carotid atherosclerosis. At present, the combined mechanisms of hemodynamic and geometric in the formation of carotid atherosclerotic plaque are not clear. Thus, this study characterized the geometric and hemodynamic characteristics of carotid atherosclerotic plaque formation using four-dimensional (4D) flow magnetic resonance imaging (MRI). Methods: Ultimately, 122 carotid arteries from 61 patients were examined in this study. According to the presence of plaques at the bifurcation of the carotid artery on cervical vascular ultrasound (US), carotid arteries were placed into a plaque group (N=69) and nonplaque group (N=53). The ratio of the maximum internal carotid artery (ICA) inner diameter to the maximum common carotid artery (CCA) inner diameter (ICA-CCA diameter ratio), bifurcation angle, and tortuosity were measured using neck three-dimensional time-of-flight magnetic resonance angiography (3D TOF-MRA). Meanwhile, 4D flow MRI was used to obtain the following hemodynamic parameters of the carotid arteries: volume flow rate, velocity, wall shear stress (WSS), and pressure gradient (PG). Independent sample t-tests were used to compare carotid artery geometry and hemodynamic changes between the plaque group and nonplaque group. Results: The ICA-CCA diameter ratio between the plaque group and the nonplaque group was not significantly different (P=0.124), while there were significant differences in the bifurcation angle (P=0.005) and tortuosity (P=0.032). The bifurcation angle of the plaque group was greater than that of the nonplaque group (60.70°±20.75° vs. 49.32°±22.90°), and the tortuosity was smaller than that of the nonplaque group (1.07±0.04 vs. 1.09±0.05). There were no significant differences between the two groups in terms of volume flow rate (P=0.351) and the maximum value of velocity (velocitymax) (P=0.388), but the axial, circumferential, and 3D WSS values were all significantly different, including their mean values (all P values <0.001) and the maximum value of 3D WSS (P<0.001), with the mean axial, circumferential, 3D WSS values, along with the maximum 3D WSS value, being lower in the plaque group. The two groups also differed significantly in terms of maximum PG value (P=0.030) and mean PG value (P=0.026), with these values being greater in the nonplaque group than in the plaque group. Conclusions: A large bifurcation angle and a low tortuosity of the carotid artery are geometric risk factors for plaque formation in this area. Low WSS and low PG values are associated with carotid atherosclerotic plaque formation.

3.
Med Biol Eng Comput ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954265

ABSTRACT

Diastolic vortex ring (VR) plays a key role in the blood-pumping function exerted by the left ventricle (LV), with altered VR structures being associated with LV dysfunction. Herein, we sought to characterize the VR diastolic alterations in ischemic cardiomyopathy (ICM) patients with systo-diastolic LV dysfunction, as compared to healthy controls, in order to provide a more comprehensive understanding of LV diastolic function. 4D Flow MRI data were acquired in ICM patients (n = 15) and healthy controls (n = 15). The λ2 method was used to extract VRs during early and late diastolic filling. Geometrical VR features, e.g., circularity index (CI), orientation (α), and inclination with respect to the LV outflow tract (ß), were extracted. Kinetic energy (KE), rate of viscous energy loss ( EL ˙ ), vorticity (W), and volume (V) were computed for each VR; the ratios with the respective quantities computed for the entire LV were derived. At peak E-wave, the VR was less circular (p = 0.032), formed a smaller α with the LV long-axis (p = 0.003) and a greater ß (p = 0.002) in ICM patients as compared to controls. At peak A-wave, CI was significantly increased (p = 0.034), while α was significantly smaller (p = 0.016) and ß was significantly increased (p = 0.036) in ICM as compared to controls. At both peak E-wave and peak A-wave, EL ˙ VR / EL ˙ LV , WVR/WLV, and VVR/VLV significantly decreased in ICM patients vs. healthy controls. KEVR/VVR showed a significant decrease in ICM patients with respect to controls at peak E-wave, while VVR remained comparable between normal and pathologic conditions. In the analyzed ICM patients, the diastolic VRs showed alterations in terms of geometry and energetics. These derangements might be attributed to both structural and functional alterations affecting the infarcted wall region and the remote myocardium.

5.
BMC Med Imaging ; 24(1): 131, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840059

ABSTRACT

PURPOSE: To evaluate the intracavity left ventricular (LV) blood flow kinetic energy (KE) parameters using four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) in patients with acute myocardial infarction (AMI). METHODS: Thirty AMI patients and twenty controls were examined via CMR, which included cine imaging, late gadolinium enhancement (LGE) and global heart 4D flow imaging. The KE parameters were indexed to LV end-diastolic volume (EDV) to obtain average, systolic and diastolic KE as well as the proportion of LV in-plane KE (%). These parameters were compared between the AMI patients and controls and between the two subgroups. RESULTS: Analysis of the LV blood flow KE parameters at different levels of the LV cavity and in different segments of the same level showed that the basal level had the highest blood flow KE while the apical level had the lowest in the control group. There were no significant differences in diastolic KE, systolic in-plane KE and diastolic in-plane KE between the anterior wall and posterior wall (p > 0.05), only the systolic KE had a significant difference between them (p < 0.05). Compared with those in the control group, the average (10.7 ± 3.3 µJ/mL vs. 14.7 ± 3.6 µJ/mL, p < 0.001), systolic (14.6 ± 5.1 µJ/mL vs. 18.9 ± 3.9 µJ/mL, p = 0.003) and diastolic KE (7.9 ± 2.5 µJ/mL vs. 10.6 ± 3.8 µJ/mL, p = 0.018) were significantly lower in the AMI group. The average KE in the infarct segment was lower than that in the noninfarct segment in the AMI group (49.5 ± 18.7 µJ/mL vs. 126.3 ± 50.7 µJ/mL, p < 0.001), while the proportion of systolic in-plane KE increased significantly (61.8%±11.5 vs. 42.9%±14.4, p = 0.001). CONCLUSION: The 4D Flow MRI technique can be used to quantitatively evaluate LV regional hemodynamic parameters. There were differences in the KE parameters of LV blood flow at different levels and in different segments of the same level in healthy people. In AMI patients, the average KE of the infarct segment decreased, while the proportion of systolic in-plane KE significantly increased.


Subject(s)
Heart Ventricles , Myocardial Infarction , Humans , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Male , Female , Middle Aged , Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Case-Control Studies , Magnetic Resonance Imaging, Cine/methods , Blood Flow Velocity , Adult
6.
J Artif Organs ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916826

ABSTRACT

Biological valves are becoming more frequently used in aortic valve replacement. While several reports have evaluated the performance of biological valves, echocardiography studies during exercise stress remain scarce. Furthermore, no current reports compare rate changes in the aortic valve area of biological valves under increased exercise load. Here, we performed exercise stress echocardiography in patients after AVR with Trifecta or Inspiris valves and compared the rates of change in aortic valve areas (AVA). In addition, hydrodynamic analysis at rest was conducted with four-dimensional flow magnetic resonance imaging (4D-flow MRI). Exercise stress echocardiography was performed in seven Trifecta and seven Inspiris patients who underwent AVR at our hospital while 4D flow MRI was performed in all but two Trifecta cases. Comparing the percentage change in AVA when loaded to 25 W versus at rest, Trifecta was greater than Inspiris (28.7 ± 36.0 vs - 0.8 ± 12.4%). The smaller AVA at rest was considered causative for this. Meanwhile, Trifecta systolic energy loss in the prosthetic valve segment on 4D-flow MRI (97.5 ± 35.9 vs 52.7 ± 25.3 mW) was higher than Inspiris. The opening of the Trifecta valve was considered to be restricted at rest and this may reflect the current reports of early valve degradation requiring reoperation. Taken together, we observed that the Trifecta design may promote faster wear due to higher valve stress.

7.
Sci Rep ; 14(1): 12604, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824230

ABSTRACT

Pulse wave encephalopathy (PWE) is hypothesised to initiate many forms of dementia, motivating its identification and risk assessment. As candidate pulsatility based biomarkers for PWE, pulsatility index and pulsatility damping have been studied and, currently, do not adequately stratify risk due to variability in pulsatility and spatial bias. Here, we propose a locus-independent pulsatility transmission coefficient computed by spatially tracking pulsatility along vessels to characterise the brain pulse dynamics at a whole-organ level. Our preliminary analyses in a cohort of 20 subjects indicate that this measurement agrees with clinical observations relating blood pulsatility with age, heart rate, and sex, making it a suitable candidate to study the risk of PWE. We identified transmission differences between vascular regions perfused by the basilar and internal carotid arteries attributed to the identified dependence on cerebral blood flow, and some participants presented differences between the internal carotid perfused regions that were not related to flow or pulsatility burden, suggesting underlying mechanical differences. Large populational studies would benefit from retrospective pulsatility transmission analyses, providing a new comprehensive arterial description of the hemodynamic state in the brain. We provide a publicly available implementation of our tools to derive this coefficient, built into pre-existing open-source software.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Female , Male , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Aged , Middle Aged , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Pulse Wave Analysis/methods , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/physiology , Basilar Artery/diagnostic imaging , Basilar Artery/physiology , Adult
8.
Circulation ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836358

ABSTRACT

BACKGROUND: Whether aortic valve stenosis (AS) can adversely affect systemic endothelial function independently of standard modifiable cardiovascular risk factors is unknown. METHODS: We therefore investigated endothelial and cardiac function in an experimental model of AS mice devoid of standard modifiable cardiovascular risk factors and human cohorts with AS scheduled for transcatheter aortic valve replacement. Endothelial function was determined by flow-mediated dilation using ultrasound. Extracellular hemoglobin (eHb) concentrations and NO consumption were determined in blood plasma of mice and humans by ELISA and chemiluminescence. This was complemented by measurements of aortic blood flow using 4-dimensional flow acquisition by magnetic resonance imaging and computational fluid dynamics simulations. The effects of plasma and red blood cell (RBC) suspensions on vascular function were determined in transfer experiments in a murine vasorelaxation bioassay system. RESULTS: In mice, the induction of AS caused systemic endothelial dysfunction. In the presence of normal systolic left ventricular function and mild hypertrophy, the increase in the transvalvular gradient was associated with elevated eryptosis, increased eHb and plasma NO consumption; eHb sequestration by haptoglobin restored endothelial function. Because the aortic valve orifice area in patients with AS decreased, postvalvular mechanical stress in the central ascending aorta increased. This was associated with elevated eHb, circulating RBC-derived microvesicles, eryptotic cells, lower haptoglobin levels without clinically relevant anemia, and consecutive endothelial dysfunction. Transfer experiments demonstrated that reduction of eHb by treatment with haptoglobin or elimination of fluid dynamic stress by transcatheter aortic valve replacement restored endothelial function. In patients with AS and subclinical RBC fragmentation, the remaining circulating RBCs before and after transcatheter aortic valve replacement exhibited intact membrane function, deformability, and resistance to osmotic and hypoxic stress. CONCLUSIONS: AS increases postvalvular swirling blood flow in the central ascending aorta, triggering RBC fragmentation with the accumulation of hemoglobin in the plasma. This increases NO consumption in blood, thereby limiting vascular NO bioavailability. Thus, AS itself promotes systemic endothelial dysfunction independent of other established risk factors. Transcatheter aortic valve replacement is capable of limiting NO scavenging and rescuing endothelial function by realigning postvalvular blood flow to near physiological patterns. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05603520. URL: https://www.clinicaltrials.gov; Unique identifier: NCT01805739.

9.
Front Radiol ; 4: 1385424, 2024.
Article in English | MEDLINE | ID: mdl-38895589

ABSTRACT

Introduction: Intracranial 4D flow MRI enables quantitative assessment of hemodynamics in patients with intracranial atherosclerotic disease (ICAD). However, quantitative assessments are still challenging due to the time-consuming vessel segmentation, especially in the presence of stenoses, which can often result in user variability. To improve the reproducibility and robustness as well as to accelerate data analysis, we developed an accurate, fully automated segmentation for stenosed intracranial vessels using deep learning. Methods: 154 dual-VENC 4D flow MRI scans (68 ICAD patients with stenosis, 86 healthy controls) were retrospectively selected. Manual segmentations were used as ground truth for training. For automated segmentation, deep learning was performed using a 3D U-Net. 20 randomly selected cases (10 controls, 10 patients) were separated and solely used for testing. Cross-sectional areas and flow parameters were determined in the Circle of Willis (CoW) and the sinuses. Furthermore, the flow conservation error was calculated. For statistical comparisons, Dice scores (DS), Hausdorff distance (HD), average symmetrical surface distance (ASSD), Bland-Altman analyses, and interclass correlations were computed using the manual segmentations from two independent observers as reference. Finally, three stenosis cases were analyzed in more detail by comparing the 4D flow-based segmentations with segmentations from black blood vessel wall imaging (VWI). Results: Training of the network took approximately 10 h and the average automated segmentation time was 2.2 ± 1.0 s. No significant differences in segmentation performance relative to two independent observers were observed. For the controls, mean DS was 0.85 ± 0.03 for the CoW and 0.86 ± 0.06 for the sinuses. Mean HD was 7.2 ± 1.5 mm (CoW) and 6.6 ± 3.7 mm (sinuses). Mean ASSD was 0.15 ± 0.04 mm (CoW) and 0.22 ± 0.17 mm (sinuses). For the patients, the mean DS was 0.85 ± 0.04 (CoW) and 0.82 ± 0.07 (sinuses), the HD was 8.4 ± 3.1 mm (CoW) and 5.7 ± 1.9 mm (sinuses) and the mean ASSD was 0.22 ± 0.10 mm (CoW) and 0.22 ± 0.11 mm (sinuses). Small bias and limits of agreement were observed in both cohorts for the flow parameters. The assessment of the cross-sectional lumen areas in stenosed vessels revealed very good agreement (ICC: 0.93) with the VWI segmentation but a consistent overestimation (bias ± LOA: 28.1 ± 13.9%). Discussion: Deep learning was successfully applied for fully automated segmentation of stenosed intracranial vasculatures using 4D flow MRI data. The statistical analysis of segmentation and flow metrics demonstrated very good agreement between the CNN and manual segmentation and good performance in stenosed vessels. To further improve the performance and generalization, more ICAD segmentations as well as other intracranial vascular pathologies will be considered in the future.

10.
Int J Cardiovasc Imaging ; 40(7): 1511-1524, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819601

ABSTRACT

4D-flow MRI is a promising technique for assessing vessel hemodynamics. However, its utilization is currently limited by the lack of reference values, particularly for pulmonary vessels. In this work, we have analysed flow and velocity in the pulmonary trunk (PT), left and right pulmonary arteries (LPA and RPA, respectively) in Landrace pigs at both rest and stress through the software MEVISFlow. Nine healthy Landrace pigs were acutely instrumented closed-chest and transported to the CMR facility for evaluation. After rest measurements, dobutamine was administered to achieve a 25% increase in heart rate compared to rest. 4D-flow MRI images have been analysed through MEVISFlow by two independent observers. Inter- and intra-observer reproducibility was quantified using intraclass correlation coefficient. A significant difference between rest and stress regarding flow and velocity in all the pulmonary vessels was observed. Mean flow increased 55% in PT, 75% in LPA and 40% in RPA. Mean peak velocity increased 55% in PT, 75% in LPA and 66% in RPA. A good-to-excellent reproducibility was observed in rest and stress for flow measurements in all three arteries. An excellent reproducibility for velocity was found in PT at rest and stress, a good one for LPA and RPA at rest, while poor reproducibility was found at stress. The current study showed that pulmonary flow and velocity assessed through 4D-flow MRI follow the physiological alterations during cardiac cycle and after stress induced by dobutamine. A clinical translation to assess pulmonary diseases with 4D-flow MRI under stress conditions needs investigation.


Subject(s)
Dobutamine , Predictive Value of Tests , Pulmonary Artery , Pulmonary Circulation , Sus scrofa , Animals , Reproducibility of Results , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiopathology , Dobutamine/administration & dosage , Dobutamine/pharmacology , Blood Flow Velocity , Observer Variation , Perfusion Imaging/methods , Hemodynamics , Image Interpretation, Computer-Assisted , Models, Animal , Magnetic Resonance Imaging , Female , Magnetic Resonance Angiography , Heart Rate
11.
Heliyon ; 10(9): e30006, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694075

ABSTRACT

Background: Wall shear stress (WSS) has been proved to be related to the formation, development and rupture of intracranial aneurysms. Aneurysm wall enhancement (AWE) on magnetic resonance imaging (MRI) can be caused by inflammation and have confirmed its relationship with low WSS. High WSS can also result in inflammation but the research of its correlation with AWE is lack because of the focus on large aneurysms limited by 3T MRI in most previous studies.This study aimed to assess the potential association between high or low WSS and AWE in different aneuryms. Especially the relationship between high WSS and AWE in small aneurysm. Methods: Forty-three unruptured intracranial aneurysms in 42 patients were prospectively included for analysis. 7.0 T MRI was used for imaging. Aneurysm size was measured on three-dimensional time-of-flight (TOF) images. Aneurysm-to-pituitary stalk contrast ratio (CRstalk) was calculated on post-contrast black-blood T1-weighted fast spin echo sequence images. Hemodynamics were assessed by four-dimensional flow MRI. Results: The small aneurysms group had more positive WSS-CRstalk correlation coefficient distribution (dome: 78.6 %, p = 0.009; body: 50.0 %, p = 0.025), and large group had more negative coefficient distribution (dome: 44.8 %, p = 0.001; body: 69.0 %, p = 0.002). Aneurysm size was positively correlated with the significant OSI-CRstalk correlation coefficient at the dome (p = 0.012) and body (p = 0.010) but negatively correlated with the significant WSS-CRstalk correlation coefficient at the dome (p < 0.001) and body (p = 0.017). Conclusion: AWE can be mediated by both high and low WSS, and translate from high WSS- to low WSS-mediated pathways as size increase. Additionally, AWE may serve as an indicator of the stage of aneurysm development via different correlations with hemodynamic factors.

12.
Article in English | MEDLINE | ID: mdl-38748858

ABSTRACT

AIMS: Understanding the mechanisms underlying ascending aortic dilation is imperative for refined risk stratification of these patients, particularly among incidentally identified patients, most commonly presenting with tricuspid valves. The aim of this study was to explore associations between ascending aortic hemodynamics, assessed using four-dimensional flow cardiovascular magnetic resonance imaging (4D Flow CMR), and circulating biomarkers in aortic dilation. METHODS AND RESULTS: Forty-seven cases with aortic dilation (diameter ≥40 mm) and 50 sex-and age-matched controls (diameter <40 mm), all with tricuspid aortic valves, underwent 4D flow CMR and venous blood sampling. Associations between flow displacement, wall shear stress (WSS), and oscillatory shear index in the ascending aorta derived from 4D Flow CMR, and biomarkers including interleukin-6, collagen type I α1 chain, metalloproteinases (MMPs), and inhibitors of MMPs derived from blood plasma, were investigated. Cases with dilation exhibited lower peak systolic WSS, higher flow displacement, and higher mean oscillatory shear index compared to controls without dilation. No significant differences in biomarkers were observed between the groups. Correlations between hemodynamics and biomarkers were observed, particularly between maximum time-averaged WSS and interleukin-6 (r = 0.539, p < 0.001), and maximum oscillatory shear index and collagen type I α1 chain (r = -0.575, p < 0.001 in cases). CONCLUSION: Significant associations were discovered between 4D flow CMR derived whole-cardiac cycle WSS and circulating biomarkers representing inflammation and collagen synthesis, suggesting an intricate interplay between hemodynamics and the processes of inflammation and collagen synthesis in patients with early aortic dilation and tricuspid aortic valves.

13.
Article in English | MEDLINE | ID: mdl-38704861

ABSTRACT

OBJECTIVES: The objective of this study was primarily to compare four-dimensional flow magnetic resonance imaging metrics in the ascending aorta (AA) of patients with right-left fusion type bicuspid aortic valve (RL-BAV) and repaired coarctation of the aorta (CoA) to RL-BAV without CoA. Metrics of patients with RL-BAV were also compared to the matched group of patients with common tricuspid aortic valve (TAV). METHODS: Eleven patients with RL-BAV and CoA, 11 patients with RL-BAV without CoA and 22 controls with TAV were investigated. Peak velocity (cm/s), peak flow (ml/s) and flow displacement (%) were analysed at 5 pre-defined AA levels. In addition, regional wall shear stress (WSS, mN/m2), circumferential WSS (WSSc) and axial WSS (WSSa) at all levels were quantified in 6 sectors of the aortic circle. Averaged WSS values on each level (WSSavg, WSSc, avg and WSSa, avg) were calculated as well. RESULTS: Peak velocity at the proximal tubular AA was significantly lower in BAV and CoA group (P = 0.047) compared to BAV without CoA. In addition, the WSSa, avg was found to be higher for the BAV and CoA group at proximal AA respectively (P = 0.040). No other significant differences were found between these groups. BAV group's peak velocity was higher at every level (P < 0.001-0.004) compared to TAV group. Flow displacement was significantly higher for the BAV group at every level (P < 0.001) besides at the most distal level. All averaged WSS values were significantly higher in BAV patients in distal AA (P < 0.001-0.018). CONCLUSIONS: Repaired CoA does not relevantly alter four-dimensional flow metrics in the AA of patients with RL-BAV. However, RL-BAV majorly alters flow dynamics in the AA when compared to patients with TAV. CLINICAL TRIAL REGISTRATION NUMBER: https://www.clinicaltrials.gov/study/NCT05065996, Unique Protocol ID 5063566.

14.
Egypt Heart J ; 76(1): 53, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696068

ABSTRACT

BACKGROUND: Four-dimensional flow magnetic resonance imaging (MRI) enables blood flow visualization. The absence of left atrial vortex flow (LAVF) has been implicated in the development of thrombus formation and arrhythmias. However, the clinical relevance of this phenomenon in patients with congenital heart disease (CHD) remains unclear. This study aimed to unravel the relationship of LAVF with left atrial functions in patients with CHD. RESULTS: Twenty-five participants who underwent cardiac MRI examinations were included (8 postoperative patients with CHD aged 17-41 years and 17 volunteers aged 21-31 years). All participants were in sinus rhythm. Four-dimensional flow MRI (velocity encoding 100 cm/s) assessed the presence of LAVF, and its relationship with left atrial function determined by transthoracic echocardiography was explored. LAVF was detected in 16 patients. Upon classification of the participants based on the presence or absence of LAVF, 94% of participants in the LAVF group were volunteers, while 78% of those in the without LAVF group were postoperative patients. Participants without LAVF had a significantly lower left atrial ejection fraction (61% vs. 70%, p = 0.019), reservoir (32% vs. 47%, p = 0.006), and conduit (22% vs. 36%, p = 0.002) function than those with LAVF. CONCLUSIONS: LAVF occurred during the late phase of ventricular systole, and left atrial reservoir function may have contributed to its occurrence. Many postoperative patients with CHD experienced a loss of LAVF. LAVF may indicate early left atrial dysfunction resulting from left atrial remodeling.

15.
J Magn Reson Imaging ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708838

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is associated with increased, and early cardiovascular disease risk. Changes in hemodynamics within the left ventricle (LV) respond to cardiac remodeling. The LV hemodynamics in nondialysis CKD patients are not clearly understood. PURPOSE: To use four-dimensional blood flow MRI (4D flow MRI) to explore changes in LV kinetic energy (KE) and the relationship between LV KE and LV remodeling in CKD patients. STUDY TYPE: Retrospective. POPULATION: 98 predialysis CKD patients (Stage 3: n = 21, stage 4: n = 21, and stage 5: n = 56) and 16 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession (SSFP) cine sequence, 4D flow MRI with a fast field echo sequence, T1 mapping with a modified Look-Locker SSFP sequence, and T2 mapping with a gradient recalled and spin echo sequence. ASSESSMENT: Demographic characteristics (age, sex, height, weight, blood pressure, heart rate, aortic regurgitation, and mitral regurgitation) and laboratory data (eGFR, Creatinine, hemoglobin, ferritin, transferrin saturation, potassium, and carbon dioxide bonding capacity) were extracted from patient records. Myocardial T1, T2, LV ejection fraction, end diastolic volume (EDV), end systolic volume, LV flow components (direct flow, delayed ejection, retained inflow, and residual volume) and KE parameters (peak systolic, systolic, diastolic, peak E-wave, peak A-wave, E/A ratio, and global) were assessed. The KE parameters were normalized to EDV (KEiEDV). Parameters were compared between disease stage in CKD patients, and between CKD patients and healthy controls. STATISTICAL TESTS: Differences in clinical and imaging parameters between groups were compared using one-way ANOVA, Kruskal Walls and Mann-Whitney U tests, chi-square test, and Fisher's exact test. Pearson or Spearman's correlation coefficients and multiple linear regression analysis were used to compare the correlation between LV KE and other clinical and functional parameters. A P-value of <0.05 was considered significant. RESULTS: Compared with healthy controls, peak systolic (24.76 ± 5.40 µJ/mL vs. 31.86 ± 13.18 µJ/mL), systolic (11.62 ± 2.29 µJ/mL vs. 15.27 ± 5.10 µJ/mL), diastolic (7.95 ± 1.92 µJ/mL vs. 13.33 ± 5.15 µJ/mL), peak A-wave (15.95 ± 4.86 µJ/mL vs. 31.98 ± 14.51 µJ/mL), and global KEiEDV (9.40 ± 1.64 µJ/mL vs. 14.02 ± 4.14 µJ/mL) were significantly increased and the KEiEDV E/A ratio (1.16 ± 0.67 vs. 0.69 ± 0.53) was significantly decreased in CKD patients. As the CKD stage progressed, both diastolic KEiEDV (10.45 ± 4.30 µJ/mL vs. 12.28 ± 4.85 µJ/mL vs. 14.80 ± 5.06 µJ/mL) and peak E-wave KEiEDV (15.30 ± 7.06 µJ/mL vs. 14.69 ± 8.20 µJ/mL vs. 19.33 ± 8.29 µJ/mL) increased significantly. In multiple regression analysis, global KEiEDV (ß* = 0.505; ß* = 0.328), and proportion of direct flow (ß* = -0.376; ß* = -0.410) demonstrated an independent association with T1 and T2 times. DATA CONCLUSION: 4D flow MRI-derived LV KE parameters show altered LV adaptations in CKD patients and correlate independently with T1 and T2 mapping that may represent myocardial fibrosis and edema. TECHNICAL EFFICACY: Stage 3.

16.
J Thorac Dis ; 16(4): 2623-2636, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738252

ABSTRACT

Background and Objective: Blood flow assessment is an emerging technique that allows for assessment of hemodynamics in the heart and blood vessels. Recent advances in cardiovascular imaging technologies have made it possible for this technique to be more accessible to clinicians and researchers. Blood flow assessment typically refers to two techniques: measurement-based flow visualization using echocardiography or four-dimensional flow magnetic resonance imaging (4D flow MRI), and computer-based flow simulation based on computational fluid dynamics modeling. Using these methods, blood flow patterns can be visualized and quantitative measurements of mechanical stress on the walls of the ventricles and blood vessels, most notably the aorta, can be made. Thus, blood flow assessment has been enhancing the understanding of cardiac and aortic diseases; however, its introduction to clinical practice has been negligible yet. In this article, we aim to discuss the clinical applications and future directions of blood flow assessment in aortic surgery. We then provide our unique perspective on the technique's translational impact on the surgical management of aortic disease. Methods: Articles from the PubMed database and Google Scholar regarding blood flow assessment in aortic surgery were reviewed. For the initial search, articles published between 2013 and 2023 were prioritized, including original articles, clinical trials, case reports, and reviews. Following the initial search, additional articles were considered based on manual searches of the references from the retrieved literature. Key Content and Findings: In aortic root pathology and ascending aortic aneurysms, blood flow assessment can elucidate postoperative hemodynamic changes after surgical reconfiguration of the aortic valve complex or ascending aorta. In cases of aortic dissection, analysis of blood flow can predict future aortic dilatation. For complicated congenital aortic anomalies, surgeons may use preoperative imaging to perform "virtual surgery", in which blood flow assessment can predict postoperative hemodynamics for different surgical reconstructions and assist in procedural planning even before entering the operating room. Conclusions: Blood flow assessment and computational modeling can evaluate hemodynamics and flow patterns by visualizing blood flow and calculating biomechanical forces in patients with aortic disease. We anticipate that blood flow assessment will become an essential tool in the treatment planning and understanding of the progression of aortic disease.

17.
Fluids Barriers CNS ; 21(1): 47, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816737

ABSTRACT

BACKGROUND: Bidirectional reciprocal motion of cerebrospinal fluid (CSF) was quantified using four-dimensional (4D) flow magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) MRI. To estimate various CSF motions in the entire intracranial region, we attempted to integrate the flow parameters calculated using the two MRI sequences. To elucidate how CSF dynamics deteriorate in Hakim's disease, an age-dependent chronic hydrocephalus, flow parameters were estimated from the two MRI sequences to assess CSF motion in the entire intracranial region. METHODS: This study included 127 healthy volunteers aged ≥ 20 years and 44 patients with Hakim's disease. On 4D flow MRI for measuring CSF motion, velocity encoding was set at 5 cm/s. For the IVIM MRI analysis, the diffusion-weighted sequence was set at six b-values (i.e., 0, 50, 100, 250, 500, and 1000 s/mm2), and the biexponential IVIM fitting method was adapted. The relationships between the fraction of incoherent perfusion (f) on IVIM MRI and 4D flow MRI parameters including velocity amplitude (VA), absolute maximum velocity, stroke volume, net flow volume, and reverse flow rate were comprehensively evaluated in seven locations in the ventricles and subarachnoid spaces. Furthermore, we developed a new parameter for fluid oscillation, the Fluid Oscillation Index (FOI), by integrating these two measurements. In addition, we investigated the relationship between the measurements and indices specific to Hakim's disease and the FOIs in the entire intracranial space. RESULTS: The VA on 4D flow MRI was significantly associated with the mean f-values on IVIM MRI. Therefore, we estimated VA that could not be directly measured on 4D flow MRI from the mean f-values on IVIM MRI in the intracranial CSF space, using the following formula; e0.2(f-85) + 0.25. To quantify fluid oscillation using one integrated parameter with weighting, FOI was calculated as VA × 10 + f × 0.02. In addition, the FOIs at the left foramen of Luschka had the strongest correlations with the Evans index (Pearson's correlation coefficient: 0.78). The other indices related with Hakim's disease were significantly associated with the FOIs at the cerebral aqueduct and bilateral foramina of Luschka. FOI at the cerebral aqueduct was also elevated in healthy controls aged ≥ 60 years. CONCLUSIONS: We estimated pulsatile CSF movements in the entire intracranial CSF space in healthy individuals and patients with Hakim's disease using FOI integrating VA from 4D flow MRI and f-values from IVIM MRI. FOI is useful for quantifying the CSF oscillation.


Subject(s)
Cerebrospinal Fluid , Magnetic Resonance Imaging , Humans , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Adult , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Young Adult , Aged , Hydrodynamics , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Hydrocephalus/cerebrospinal fluid , Brain/diagnostic imaging , Brain/physiology
18.
Quant Imaging Med Surg ; 14(4): 2800-2815, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617138

ABSTRACT

Background: Thoracoabdominal aortic aneurysms (TAAAs) are rare but complicated aortic pathologies that can result in high morbidity and mortality. The whole-aorta hemodynamic characteristics of TAAA survivors remains unknown. This study sought to obtain a comprehensive view of flow hemodynamics of the whole aorta in patients with TAAA using four-dimensional flow (4D flow) magnetic resonance imaging (MRI). Methods: This study included patients who had experienced TAAA or abdominal aortic aneurysm (AAA) and age- and sex-matched volunteers who had attended China Hospital from December 2021 to December 2022 in West. Patients with unstable ruptured aneurysm or other cardiovascular diseases were excluded. 4D-flow MRI that covered the whole aorta was acquired. Both planar parameters [(regurgitation fraction (RF), peak systolic velocity (Vmax), overall wall shear stress (WSS)] and segmental parameters [pulse wave velocity (PWV) and viscous energy loss (VEL)] were generated during postprocessing. The Student's t-test or Mann-Whitney test was used to compare flow dynamics among the three groups. Results: A total of 11 patients with TAAA (mean age 53.2±11.9 years; 10 males), 19 patients with AAA (mean age 58.0±11.7 years; 16 males), and 21 controls (mean age 55.4±15.0 years; 19 males) were analyzed. The patients with TAAA demonstrated a significantly higher RF and lower Vmax in the aortic arch compared to healthy controls. The whole length of the aorta in patients with TAAA was characterized by lower WSS, predominantly in the planes of pulmonary artery bifurcation and the middle infrarenal planes (all P values <0.001). As for segmental hemodynamics, compared to controls, patients with TAAA had a significantly higher PWV in the thoracic aorta (TAAA: median 11.41 m/s, IQR 9.56-14.32 m/s; control: median 7.21 m/s, IQR 5.57-7.79 m/s; P<0.001) as did those with AAA (AAA: median 8.75 m/s, IQR 7.35-10.75 m/s; control: median 7.21 m/s, IQR 5.57-7.79 m/s; P=0.024). Moreover, a greater VEL was observed in the whole aorta and abdominal aorta in patients with TAAA. Conclusions: Patients with TAAA exhibited a stiffer aortic wall with a lower WSS and a greater VEL for the whole aorta, which was accompanied by a higher RF and lower peak velocity in the dilated portion of the aorta.

19.
Clin Case Rep ; 12(4): e8739, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585588

ABSTRACT

Distal stent graft-induced new entry may occur after stent grafting for aortic dissection. Four-dimensional magnetic resonance imaging is useful for predicting outcomes, showing accelerated flow and increased wall shear stress, indicating further false lumen expansion.

20.
J Magn Reson Imaging ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558490

ABSTRACT

BACKGROUND: Automated 4D flow MRI valvular flow quantification without time-consuming manual segmentation might improve workflow. PURPOSE: Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c-AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). STUDY TYPE: Retrospective. POPULATION: 27 c-AVSD patients (median, 23 years; interquartile range, 16-31 years) and 24 healthy volunteers (25 years; 12.5-36.5 years). FIELD STRENGTH/SEQUENCE: Whole-heart 4D flow MRI and cine steady-state free precession at 3T. ASSESSMENT: After automatic valve tracking, valve annuli were segmented on time-resolved reformatted trans-valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. STATISTICAL TESTS: Comparisons between methods were assessed by Wilcoxon signed-rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P < 0.05 was considered statistically significant, with multiple testing correction. RESULTS: AMS mean analysis time was significantly shorter compared with MS (5.3 ± 1.6 minutes vs. 9.1 ± 2.5 minutes). MS NFV variation (6.0%) was significantly smaller compared with AMS (6.3%), and AS (8.2%). Median NFV difference of RAVV, LAVV, PV, and AoV between segmentation methods ranged from -0.7-1.0 mL, -0.5-2.8 mL, -1.1-3.6 mL, and - 3.1--2.1 mL, respectively. Median RAVV and LAVV RF, between 7.1%-7.5% and 3.8%-4.3%, respectively, were not significantly different between methods. Intraobserver/interobserver agreement for AMS and MS was strong-to-excellent for NFV and RF (ICC ≥0.88). DATA CONCLUSION: MS demonstrates strongest internal consistency, followed closely by AMS, and AS. Automated segmentation, with or without manual correction, can be considered for 4D flow MRI valvular flow quantification. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...