Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Brain Res ; 1838: 148996, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38744387

ABSTRACT

INTRODUCTION: The excessive fat accumulation in obesity, resulting from an unbalanced diet, can lead to metabolic and neurological disorders and increase the risk of developing anxiety and depression. AIM: Assess the impact of dietary intervention (DI) on the serotonergic system, brain-derived neurotrophic factor (BDNF) expression and behaviors of obese mice. METHODS: Male C57BL/6 mice, 5 weeks old, received a high-fat diet (HFD) for 10 weeks for the induction of obesity. After this period, for 8 weeks, half of these animals received a control diet (CD), group obese (OB) + control diet (OB + CD, n = 10), and another half continued being fed HFD, group obese + HFD (OB + HFD, n = 10). At the end of the eighth week of intervention, behavioral tests were performed (sucrose preference test, open field, novel object recognition, elevated plus maze and tail suspension). Body weight and food intake were assessed weekly. Visceral adiposity, the hippocampal and hypothalamic protein expression of BDNF, 5-HT1A (5-HT1A serotonin receptor) and TPH2 (key enzyme in serotonin synthesis), were evaluated after euthanasia. RESULTS: The dietary intervention involved changing from a HFD to a CD over an 8-week period, effectively reduced body weight gain, adiposity, and anhedonia-like behavior. In the OB + HFD group, we saw a lower sucrose preference and shorter traveled distance in the open field, along with increased pro-BDNF expression in the hypothalamus compared to the OB + CD mice. However, the levels of TPH2 and 5-HT1A remained unchanged. CONCLUSION: The HFD model induced both obesity and anhedonia, but the dietary intervention successfully improved these conditions.


Subject(s)
Adiposity , Anhedonia , Body Weight , Brain-Derived Neurotrophic Factor , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Serotonin , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Anhedonia/physiology , Serotonin/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Adiposity/physiology , Mice , Body Weight/physiology , Mice, Obese , Hippocampus/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Tryptophan Hydroxylase/metabolism , Behavior, Animal/physiology , Hypothalamus/metabolism , Dietary Patterns
2.
Neurobiol Aging ; 124: 52-59, 2023 04.
Article in English | MEDLINE | ID: mdl-36739621

ABSTRACT

5-HT1A serotonin receptors may play a role in cognitive function changes related to advanced age. Here, we investigated the effects of acute and repeated treatment with NLX-101 (F15599), a postsynaptic 5-HT1A receptor-biased agonist, and F13714, a presynaptic 5-HT1A receptor-biased agonist on spatial object pattern separation (OPS) in aged (22-24 months) rats. Neuroplasticity markers including brain-derived neurotrophic factor, PSD95, synaptophysin, and doublecortin were evaluated in the hippocampus. Unlike younger rats, aged rats were incapable of discriminating any new position of the objects in the arena, reflecting the detrimental effect of aging on pattern separation. However, aged animals treated with NLX-101 showed a significant cognitive improvement in the OPS test, accompanied by increases in hippocampal brain-derived neurotrophic factor and PSD95 protein levels. In contrast, no improvement in OPS performance was observed when aged rats received F13714. Both F13714 and NLX-101 increased the number of newborn neurons in the hippocampi of aged rats. These findings provide a rationale for targeting post-synaptic 5-HT1A as a treatment for cognitive deficits related to aging.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptor, Serotonin, 5-HT1A , Rats , Animals , Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin Receptor Agonists
3.
Development ; 149(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36458556

ABSTRACT

Serotonin (5-hydroxytryptamine, 5-HT) neurons are implicated in the etiology and therapeutics of anxiety and depression. Critical periods of vulnerability during brain development enable maladaptive mechanisms to produce detrimental consequences on adult mood and emotional responses. 5-HT plays a crucial role in these mechanisms; however, little is known about how synaptic inputs and modulatory systems that shape the activity of early 5-HT networks mature during postnatal development. We investigated in mice the postnatal trajectory of glutamate and GABA synaptic inputs to dorsal raphe nucleus (DRN) 5-HT neurons, the main source of forebrain 5-HT. High-resolution quantitative analyses with array tomography and ex vivo electrophysiology indicate that cortical glutamate and subcortical GABA synapses undergo a profound refinement process after the third postnatal week, whereas subcortical glutamate inputs do not. This refinement of DRN inputs is not accompanied by changes in 5-HT1A receptor-mediated inhibition over 5-HT neurons. Our study reveals a precise developmental pattern of synaptic refinement of DRN excitatory and inhibitory afferents, when 5-HT-related inhibitory mechanisms are in place. These findings contribute to the understanding of neurodevelopmental vulnerability to psychiatric disorders. This article has an associated 'The people behind the papers' interview.


Subject(s)
Dorsal Raphe Nucleus , Serotonin , Rats , Mice , Animals , Glutamic Acid , Rats, Sprague-Dawley , Neurons , Synapses/physiology , gamma-Aminobutyric Acid
4.
Exp Brain Res ; 240(5): 1341-1356, 2022 May.
Article in English | MEDLINE | ID: mdl-35234992

ABSTRACT

The reticular thalamic nucleus (RTn) is a thin shell of GABAergic neurons that covers the dorsal thalamus that regulate the global activity of all thalamic nuclei. RTn controls the flow of information between thalamus and cerebral cortex since it receives glutamatergic information from collaterals of thalamo-cortical (TCs) and cortico-thalamic neurons. It also receives aminergic information from several brain stem nuclei, including serotonergic fibers originated in the dorsal raphe nucleus. RTn neurons express serotonergic receptors including the 5-HT1A subtype, however, the role of this receptor in the RTn electrical activity has been scarcely analyzed. In this work, we recorded in vivo the unitary spontaneous electrical activity of RTn neurons in anesthetized rats; our study aimed to obtain information about the effects of 5-HT1A receptors in RTn neurons. Local application of fluoxetine (a serotonin reuptake inhibitor) increases burst firing index accompanied by a decrease in the basal spiking rate. Local application of different doses of serotonin and 8-OH-DPAT (a specific 5-HT1A receptor agonist) causes a similar response to fluoxetine effects. Local 5-HT1A receptors blockade produces opposite effects and suppresses the effect by 8-OH-DPAT. Our findings indicate the presence of a serotonergic tonic discharge in the RTn that increases the burst firing index and simultaneously decreases the basal spiking frequency through 5-HT1A receptors activation.


Subject(s)
Fluoxetine , Receptor, Serotonin, 5-HT1A , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Fluoxetine/pharmacology , GABAergic Neurons , Humans , Rats , Thalamic Nuclei/physiology
5.
Epilepsy Behav ; 129: 108574, 2022 04.
Article in English | MEDLINE | ID: mdl-35189481

ABSTRACT

INTRODUCTION: Mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) is a surgically remediable epilepsy with a relatively high prevalence and psychiatric comorbidities. Depressive disorders may occur in up to 25% of MTLE-HS patients suggesting a common molecular mechanism underlying both conditions. OBJECTIVE: To compare the gene expression comprising serotonin 5HT1A and 5HT2A, noradrenaline (NA) ADRA1A, and ADRA2A receptors in the hippocampus of MTLE-HS patients with and without major depression. METHODS: A cross-sectional study allocated 31 patients in three groups: MTLE-HS without psychiatric diagnosis (MTLE-HS group), MTLE-HS with major depression (MTLE-HS-D group) and a control group consisting of healthy volunteers without any neurological or psychiatric disorders. Demographic and clinical characteristics were compared among groups. Gene expression of receptors were analyzed using general linear mixed models (GLMM), with an unstructured matrix, normal link. RESULTS: The three groups showed a similar distribution regarding age, gender (p > 0.16), history of initial precipitating injury, family history of epilepsy, monthly frequency of seizures, side of hippocampal sclerosis, interictal spike distribution and anti-seizure medications did not differ between MTLE-HS and MTLE-HS-D groups (p > 0.05). We observed a greater expression of the 5HT1A receptor in the control group when compared to the MTLE-HS (P = .004) and MTLE-HS-D (P = .007). Nevertheless, we did not observe any difference when MTLE-HS and MTLE-HS-D groups were compared to the controls for the ADRA1A (P = .931; P = .931), ADRA2A (P = .120; P = .121) and 5HT2A (P = .638; P = .318, respectively) gene expression. CONCLUSION: Mesial temporal lobe epilepsy related to hippocampal sclerosis and MTLE-HS-D patients showed a lowered expression of the 5HT1A receptors when compared with the controls adjusted for age and schooling. Data suggest that temporal lobe epilepsy plasticity may affect serotonin receptors, which may lead to more frequent cases of major depression in this population. More studies comprising wider samples are necessary to confirm these results; they also should investigate serotonin reuptake drugs as an adjuvant therapeutic option for MTLE-HS disorder.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Cross-Sectional Studies , Epilepsy/metabolism , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/epidemiology , Epilepsy, Temporal Lobe/genetics , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Sclerosis/pathology , Serotonin/metabolism , Temporal Lobe/metabolism
6.
CNS Neurol Disord Drug Targets ; 21(6): 520-532, 2022.
Article in English | MEDLINE | ID: mdl-34781873

ABSTRACT

BACKGROUND: Pharmacological treatments for mental disorders, such as anxiety and depression, present several limitations and adverse effects. Therefore, new pharmacotherapy with anxiolytic and antidepressant potential is necessary, and the study of compounds capable of interacting with more than one pharmacological target may provide new therapeutic options. OBJECTIVES: In this study, we proposed the design, synthesis of a new compound, 2-(4-((1- phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethyl acetate (LQFM192), pharmacological evaluation of its anxiolytic-like and antidepressant-like activities, as well as the possible mechanisms of action involved. METHODS: Administration of LQFM192 was carried out prior to the exposure of male Swiss mice to behavioral tests, such as the elevated plus-maze and forced swimming test. The involvement of the serotonergic system was studied by pretreatment with WAY-100635 or p-chlorophenylalanine (PCPA) and the involvement of the benzodiazepine site of the GABAA receptor by pretreatment with flumazenil. RESULTS: The treatment with LQFM192 at doses of 54 and 162 µmol/kg demonstrated anxiolyticlike activity that was blocked by WAY-100635, PCPA, and flumazenil pretreatments. The potential antidepressant-like activity was visualized at the same doses and blocked by WAY-100635 and PCPA. CONCLUSION: In summary, the anxiolytic-like activity of LQFM192 is mediated by the serotonergic system and the benzodiazepine site of the GABAA receptor, and the antidepressant-like activity through the serotonergic system.


Subject(s)
Anti-Anxiety Agents , Acetates , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacology , Behavior, Animal , Benzodiazepines , Flumazenil/pharmacology , Humans , Male , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Receptors, GABA-A/metabolism
7.
Article in English | MEDLINE | ID: mdl-33333136

ABSTRACT

Cerebral ischemia due to stroke or cardiac arrest greatly affects daily functioning and the quality of life of patients and has a high socioeconomic impact due to the surge in their prevalence. Advances in the identification of an effective pharmacotherapy to promote neuroprotection and recovery after a cerebral ischemic insult are, however, limited. The serotonin 1A (5-HT1A) receptor has been implicated in the regulation of several brain functions, including mood, emotions, memory, and neuroplasticity, all of which are deleteriously affected by cerebral ischemia. This review focuses on the specific roles and mechanisms of 5-HT1A receptors in neuroprotection in experimental models of cerebral ischemia. We present experimental evidence that 5-HT1A receptor agonists can prevent neuronal damage and promote functional recovery induced by focal and transient global ischemia in rodents. However, indiscriminate activation of pre-and postsynaptic by non-biased 5-HT1A receptor agonists may be a limiting factor in the anti-ischemic clinical efficacy of these compounds since 5-HT1A receptors in different brain regions can mediate diverging or even contradictory responses. Current insights are presented into the 'biased' 5-HT1A post-synaptic heteroreceptor agonist NLX-101 (also known as F15599), a compound that preferentially and potently stimulates postsynaptic cortical pyramidal neurons without inhibiting firing of serotoninergic neurons, as a potential strategy providing neuroprotection in cerebral ischemic conditions.


Subject(s)
Brain Ischemia/metabolism , Neuroprotection/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Brain/drug effects , Brain/metabolism , Brain Ischemia/drug therapy , Humans , Neurons/drug effects , Neurons/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology
8.
Psychopharmacology (Berl) ; 237(6): 1643-1655, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32095916

ABSTRACT

RATIONALE: Prepulse inhibition of the startle reflex (PPI) is disrupted in several psychiatric disorders including schizophrenia. Understanding PPI pharmacology may help elucidate the pathophysiology of these disorders and lead to better treatments. Given the advantages of multi-target approaches for complex mental illnesses treatment, we have investigated the interaction between receptors known to modulate PPI (5-HT1A and 5-HT2A) and the neuromodulatory endocannabinoid system. OBJECTIVES: To investigate serotonin and cannabinoid receptor (CBR) co-modulation in a model of PPI disruption relevant to schizophrenia METHODS: Male Swiss mice were pretreated with WIN 55,212-2 (CBR agonist), rimonabant (CB1R inverse agonist), 8-OH-DPAT (5-HT1A/7 agonist), and volinanserin (5-HT2A antagonist) or with a combination of a cannabinoid and a serotonergic drug. PPI disruption was induced by acute administration of MK-801. RESULTS: WIN 55,212-2 and rimonabant did not change PPI nor block MK-801-induced deficits. 8-OH-DPAT increased PPI in control mice and, in a higher dose, inhibited MK-801-induced impairments. Volinanserin also increased PPI in control and MK-801-treated mice, presenting an inverted U-shaped dose-response curve. Co-administration of either cannabinoid ligand with 8-OH-DPAT did not change PPI; however, the combination of volinanserin with rimonabant increased PPI in both control and MK-801-exposed mice. CONCLUSIONS: WIN 55,212-2 and rimonabant had similar effects in PPI. Moreover, serotonin and cannabinoid receptors interact to modulate PPI. While co-modulation of CBR and 5-HT1A receptors did not change PPI, a beneficial effect of 5-HT2A and CB1R antagonist combination was detected, possibly mediated through potentiation of 5-HT2A blockade effects by concomitant CB1R blockade.


Subject(s)
Cannabinoid Receptor Antagonists/administration & dosage , Prepulse Inhibition/physiology , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Cannabinoid/physiology , Schizophrenia/drug therapy , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , 8-Hydroxy-2-(di-n-propylamino)tetralin/administration & dosage , Animals , Benzoxazines/administration & dosage , Cannabinoid Receptor Modulators/administration & dosage , Cannabinoids/administration & dosage , Dose-Response Relationship, Drug , Drug Therapy, Combination , Fluorobenzenes/administration & dosage , Male , Mice , Morpholines/administration & dosage , Naphthalenes/administration & dosage , Piperidines/administration & dosage , Prepulse Inhibition/drug effects , Reflex, Startle/drug effects , Reflex, Startle/physiology , Serotonin 5-HT2 Receptor Agonists/administration & dosage , Treatment Outcome
9.
Front Behav Neurosci ; 14: 611278, 2020.
Article in English | MEDLINE | ID: mdl-33384591

ABSTRACT

Experimental evidence indicates that cannabidiol (CBD) induces anxiolytic and antiepileptic effects through the activation of 5-HT1A receptors. These receptors are coupled to Gi/o proteins and induce inhibitory effects. At present, the interaction of CBD with 5-HT1A receptors in the human brain is unknown. The aim of this study focused on evaluating the interaction between CBD and 5-HT1A receptors in cell membranes obtained from the hippocampus and temporal neocortex of autopsies and patients with drug-resistant mesial temporal lobe epilepsy (DR-MTLE). Cell membranes were isolated from the hippocampus and temporal neocortex of a group of patients with DR-MTLE who were submitted to epilepsy surgery (n = 11) and from a group of autopsies (n = 11). The [3H]-8-OH-DPAT binding assay was used to determine the pharmacological interaction of CBD with 5-HT1A receptors. The [35S]-GTPγS assay was used to investigate the CBD-induced activation of Gi/o proteins through its action on 5-HT1A receptors.The CBD affinity (pK i) for 5-HT1A receptors was similar for autopsies and patients with DR-MTLE (hippocampus: 4.29 and 4.47, respectively; temporal neocortex: 4.67 and 4.74, respectively). Concerning the [35S]-GTPγS assay, no statistically significant changes were observed for both hippocampal and neocortical tissue (p > 0.05) at low CBD concentrations (1 pM to 10 µM). In contrast, at high concentrations (100 µM), CBD reduced the constitutive activity of Gi/o proteins of autopsies and DR-MTLE patients (hippocampus: 39.2% and 39.6%, respectively; temporal neocortex: 35.2% and 24.4%, respectively). These changes were partially reversed in the presence of WAY-100635, an antagonist of 5-HT1A receptors, in the autopsy group (hippocampus, 59.8%, p < 0.0001; temporal neocortex, 71.5%, p < 0.0001) and the group of patients with DR-MTLE (hippocampus, 53.7%, p < 0.0001; temporal neocortex, 68.5%, p < 0.001). Our results show that CBD interacts with human 5-HT1A receptors of the hippocampus and temporal neocortex. At low concentrations, the effect of CBD upon Gi/o protein activation is limited. However, at high concentrations, CBD acts as an inverse agonist of 5-HT1A receptors. This effect could modify neuronal excitation and epileptic seizures in patients with DR-MTLE.

10.
Article in English | MEDLINE | ID: mdl-31809832

ABSTRACT

Pharmacological interventions that selectively activate serotonin 5-hydroxytryptramine-1A (5-HT1A) heteroreceptors may prevent or attenuate the consequences of brain ischemic episodes. The present study investigated whether the preferential 5-HT1A postsynaptic receptor agonist NLX-101 (a.k.a. F15599) mitigates cognitive and emotional impairments and affects neuroplasticity in mice that are subjected to the bilateral common carotid artery occlusion (BCCAO) model of brain ischemia. The selective serotonin reuptake inhibitor escitalopram (Esc) was used for comparative purposes because it is able to decrease morbidity and improve recovery in stroke patients and ischemic rodents. Sham and BCCAO mice received daily doses of NLX-101 (0.32 mg/kg, i.p) or Esc (20 mg/kg, i.p) for 28 days. During this period, they were evaluated for locomotor activity, anxiety- and despair-related behaviors and hippocampus-dependent cognitive function, using the open field, elevated zero maze, forced swim test and object location test, respectivelly. The mice's brains were processed for biochemical and histological analyses. BCCAO mice exhibited high anxiety and despair-like behaviors and performed worse than controls in the cognitive assessment. BCCAO induced neuronal and dendritic spine loss and decreases in the protein levels of neuronal plasticity markers, including brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein-95 (PSD-95), in prefrontal cortex (PFC) and hippocampus. NLX-101 and Esc attenuated cognitive impairments and despair-like behaviors in BCCAO mice. Only Esc decreased anxiety-like behaviors due to brain ischemia. Both NLX-101 and Esc blocked the increase in plasma corticosterone levels and, restored BDNF, SYN and PSD-95 protein levels in the hippocampus. Moreover, both compounds impacted positively dentritic remodeling in the hippocampus and PFC of ischemic mice. In the PFC, NLX-101 increased the BDNF protein levels, while Esc in turn, attenuated the decrease in the PSD-95 protein levels induced by BCCAO. The present results suggest that activation of post-synaptic 5-HT1A receptors is the molecular mechanism for serotonergic protective effects in BCCAO. Moreover, post-synaptic biased agonists such as NLX-101 might constitute promising therapeutics for treatment of functional and neurodegenerative outcomes of brain ischemia.


Subject(s)
Brain Ischemia/metabolism , Neuronal Plasticity/drug effects , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Receptor, Serotonin, 5-HT1A/metabolism , Recovery of Function/drug effects , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Animals , Brain Ischemia/drug therapy , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Piperidines/pharmacology , Pyrimidines/pharmacology , Recovery of Function/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology
11.
Front Cell Neurosci ; 13: 384, 2019.
Article in English | MEDLINE | ID: mdl-31555094

ABSTRACT

Neurotrophic factors are relevant regulators of the neurogenic process at different levels. In particular, the brain-derived neurotrophic factor, BDNF, is highly expressed in the hippocampus (HC) of rodents and participates in the control of neuronal proliferation, and survival in the dentate gyrus (DG). Likewise, serotonin is also involved in the regulation of neurogenesis, though its role is apparently more complex. Indeed, both enhancement of serotonin neurotransmission as well as serotonin depletion, paradoxically increase neuronal survival in the HC of mice. In this study, we analyzed the protein expression of the BDNF isoforms, i.e., pro- and mature-BDNF, and their respective receptors p75 and TrkB, in the HC of mice chronically treated with para-chloro-phenyl-alanine (PCPA), an inhibitor of serotonin synthesis. The same analysis was conducted in hyposerotonergic mice with concomitant administration of the 5-HT1 A receptor agonist, 8-Hydroxy-2-(di-n- propylamino) tetralin (8-OH-DPAT). Increased expression of p75 receptor with decreased expression of pro-BDNF was observed after chronic PCPA. Seven-day treatment with 8-OH-DPAT reestablished the expression of pro-BDNF modified by PCPA, and induced an increase in the expression of p75 receptor. It has been demonstrated that PCPA-treated mice have higher number of immature neurons in the HC. Given that immature neurons participate in the pattern separation process, the object pattern separation test was conducted. A better performance of hyposerotonergic mice was not confirmed in this assay. Altogether, our results show that molecules in the BDNF signaling pathway are differentially expressed under diverse configurations of the serotonergic system, allowing for fine-tuning of the neurogenic process.

12.
Article in English | MEDLINE | ID: mdl-31054943

ABSTRACT

Long-term single housing increases aggressive behavior in mice, a condition named isolation-induced aggression or territorial aggression, which can be attenuated by anxiolytic, antidepressant, and antipsychotic drugs. Preclinical and clinical findings indicate that cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, has anxiolytic, antidepressant, and antipsychotic properties. Few studies, however, have investigated the effects of CBD on aggressive behaviors. Here, we investigated whether CBD (5, 15, 30, and 60 mg/kg; i.p.) could attenuate social isolation-induced aggressive behavior in the resident-intruder test. Male Swiss mice (7-8 weeks) were single-housed for 10 days (resident mice) to induce aggressive behaviors, while conspecific mice of same sex and age (intruder mice) were group-housed. During the test, the intruder was placed into the resident's home-cage and aggressive behaviors initiated by the resident, including the latency for the first attack, number of attacks, and total duration of aggressive encounters, were recorded. The involvement of 5-HT1A and CB1 receptors (CB1R) in the effects of CBD was also investigated. All tested CBD doses induced anti-aggressive effects, indicated by a decrease in the number of attacks. CBD, at intermediary doses (15 and 30 mg/kg), also increased latency to attack the intruder and decreased the duration of aggressive encounters. No CBD dose interfered with locomotor behavior. CBD anti-aggressive effects were attenuated by the 5-HT1A receptor antagonist WAY100635 (0.3 mg/kg) and the CB1 antagonist AM251 (1 mg/kg), suggesting that CBD decreases social isolation-induced aggressive behaviors through a mechanism associated with the activation of 5-HT1A and CB1 receptors. Also, CBD decreased c-Fos protein expression, a neuronal activity marker, in the lateral periaqueductal gray (lPAG) in social-isolated mice exposed to the resident-intruder test, indicating a potential involvement of this brain region in the drug effects. Taken together, our findings suggest that CBD may be therapeutically useful to treat aggressive behaviors that are usually associated with psychiatric disorders.


Subject(s)
Aggression/drug effects , Aggression/physiology , Cannabidiol/antagonists & inhibitors , Cannabidiol/pharmacology , Receptor, Cannabinoid, CB1/physiology , Receptor, Serotonin, 5-HT1A/physiology , Social Isolation , Animals , Cannabinoid Receptor Antagonists/pharmacology , Dose-Response Relationship, Drug , Housing, Animal , Male , Mice , Motor Activity/drug effects , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiology , Piperazines/pharmacology , Piperidines/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology
13.
Biomed Pharmacother ; 103: 546-552, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29677541

ABSTRACT

The piperazine derivatives correspond to an extensive chemical class of compounds with numerous neuropharmacological activities, including antidepressant (e.g., nefazodone, trazodone) and anxiolytic (e.g., buspirone) properties. Therefore, aiming to identify a new antidepressant and antianxiety lead-compound, our group designed, synthesized, and investigated the effects of a new piperazine compound, namely, LQFM104, on the behavior of mice. Male albino Swiss mice were treated with LQFM104 prior to predictive behavioral tests as open field (OFT), elevated plus maze (EPM), forced swimming (FST), and tail suspension tests (TST). The participation of the serotonergic system was evaluated by pretreatment with a 5-HT1A antagonist receptor (WAY100635) and serotonin (5-HT) synthesis inhibitor (p-chlorphenylalanine, pCPA) before oral administration of LQFM104 and behavioral tests. The treatment with LQFM104 did not interfere with locomotor activity but revealed suggestive data of anxiolytic-like effects by the increase in the time spent in the center of the OFT. This activity was confirmed by the results obtained in the EPM, and it was abolished after pretreatment with WAY100635 and pCPA. The immobility time decreased in both the FST and TST. The antidepressant-like activity was completely abolished after WAY100635 pretreatment. Altogether, these data revealed that LQFM104 possesses anxiolytic and antidepressant-like properties in behavioral tests on mice, and these activities are possibly mediated, directly and/or indirectly, by serotonergic pathways.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Piperazines/pharmacology , Receptor, Serotonin, 5-HT1A/physiology , Serotonin/physiology , Animals , Anti-Anxiety Agents/chemistry , Antidepressive Agents/chemistry , Dose-Response Relationship, Drug , Hindlimb Suspension/methods , Hindlimb Suspension/psychology , Locomotion/drug effects , Locomotion/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Piperazine , Piperazines/chemistry , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin Antagonists/pharmacology
14.
Physiol Behav ; 179: 346-352, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28705535

ABSTRACT

Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT1A receptor (5-HT1A-R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT1A-R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT1A-R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT1A-R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz.


Subject(s)
Clozapine/pharmacology , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Maze Learning/drug effects , Serotonin Antagonists/pharmacology , Spatial Memory/drug effects , Animals , Antipsychotic Agents/pharmacology , Anxiety/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Learning Disabilities/chemically induced , Learning Disabilities/drug therapy , Learning Disabilities/metabolism , Male , Maze Learning/physiology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Piperazines/pharmacology , Pyridines/pharmacology , Random Allocation , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Spatial Memory/physiology
15.
Brain Res Bull ; 121: 59-67, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26772625

ABSTRACT

Fast ripples (FR, 250-600 Hz) are field potentials that occur only in those areas capable of generating seizures, such as the hippocampus, and modulation of FR by serotonin has been reported. Therefore, we hypothesized that the receptor antagonists 5HT1A and 5HT2A, B, C will increase FR in rats treated with kainic acid (KA, 0.8 µg/0.5 µl). For this purpose, the intracranial EEG recordings of the hippocampus from animals treated with KA and the serotonin antagonists WAY100135 and ritanserin (dose 0.2mg/Kg, i.p) were analyzed. In addition, morphologic parameters were analyzed after staining samples with cresyl violet, Timm stain, NeuN and GFAP and observing immunofluorescence. The results showed an increase in the number of events of FR (p<0.0001) and duration of each FR event after the administration of WAY100135 (p<0.030). Additionally, there was an increase in the number of events of FR (p<0.0001) and amplitude of FR after ritanserin administration (p<0.014). In relation to changes in unspecified cells, there was a significant decrement in the width of the CA3 pyramidal layer of the hippocampus (p<0.001), and there were no significant changes in reactive glia and fiber sprouting. However, a slight gain of astrocytes marked with GFAP and larger astrocytes with more projections were observed. In conclusion, these results support the modulation of FR by serotonin with participation of the 5HT1A receptor as a possible mediator of the effect. However the exact mechanisms resulting in such effect is not known.


Subject(s)
Brain Waves/drug effects , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Seizures/chemically induced , Seizures/physiopathology , Serotonin Antagonists/pharmacology , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electroencephalography , Glial Fibrillary Acidic Protein/metabolism , Male , Phosphopyruvate Hydratase/metabolism , Piperazines/pharmacology , Rats , Rats, Wistar , Ritanserin/pharmacology
16.
Front Pharmacol ; 6: 298, 2015.
Article in English | MEDLINE | ID: mdl-26779016

ABSTRACT

Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a (-/-)) with wild type (htr2a (+/+)) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

17.
J Psychopharmacol ; 28(12): 1155-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25315826

ABSTRACT

A wealth of evidence indicates that the activation of 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal grey matter (dPAG) inhibits escape, a panic-related defensive behaviour. Results that were previously obtained with the elevated T-maze test of anxiety/panic suggest that 5-HT1A and µ-opioid receptors in this midbrain area work together to regulate this response. To investigate the generality of this finding, we assessed whether the same cooperative mechanism is engaged when escape is evoked by a different aversive stimulus electrical stimulation of the dPAG. Administration of the µ-receptor blocker CTOP into the dPAG did not change the escape threshold, but microinjection of the µ-receptor agonist DAMGO (0.3 and 0.5 nmol) or the 5-HT1A receptor agonist 8-OHDPAT (1.6 nmol) increased this index, indicating a panicolytic-like effect. Pretreatment with CTOP antagonised the anti-escape effect of 8-OHDPAT. Additionally, combined administration of subeffective doses of DAMGO and 8-OHDPAT increased the escape threshold, indicating drug synergism. Therefore, regardless of the aversive nature of the stimulus, µ-opioid and 5-HT1A receptors cooperatively act to regulate escape behaviour. A better comprehension of this mechanism might allow for new therapeutic strategies for panic disorder.


Subject(s)
Escape Reaction/physiology , Panic/physiology , Periaqueductal Gray/physiology , Receptor, Serotonin, 5-HT1A/physiology , Receptors, Opioid, mu/physiology , 8-Hydroxy-2-(di-n-propylamino)tetralin/antagonists & inhibitors , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Electric Stimulation , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Escape Reaction/drug effects , Male , Microinjections , Panic/drug effects , Periaqueductal Gray/drug effects , Rats , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A , Receptors, Opioid, mu/antagonists & inhibitors , Somatostatin/administration & dosage , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
18.
Front Mol Neurosci ; 7: 24, 2014.
Article in English | MEDLINE | ID: mdl-24782706

ABSTRACT

Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS) is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT) mRNA expression in brain areas involved in the control of emotions, memory, and fear as well as in regions controlling the central serotonergic tone. To test this, Sprague-Dawley rats were subjected to MS for 3 h daily during postnatal days 2-12. As control, age matched rats were non-separated (NS) from their dams. When animals reached adulthood (11-13 weeks) brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN) and SERT in the DRN was analyzed through in situ hybridisation. Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats. These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

19.
J Neurosci Res ; 92(8): 1000-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24752854

ABSTRACT

Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 µM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.


Subject(s)
Hippocampus/drug effects , Neurites/drug effects , Neurons/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , Serotonin/metabolism , Animals , Cell Shape/drug effects , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Neurites/metabolism , Neurons/cytology , Neurons/metabolism , Phenols/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin Antagonists/pharmacology , Sulfonamides/pharmacology
20.
Physiol Behav ; 124: 37-44, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24211235

ABSTRACT

Chronic administration of clomipramine (CMI) to neonatal rats produces behaviors that resemble a depressive state in adulthood. Dysfunctions in the activity of the central nervous system's serotonergic function are important in understanding the pathophysiology of depression. The serotonin system is implicated in major depression and suicide and is negatively regulated by somatodendritic 5-HT1A autoreceptors. Desensitization of 5-HT1A autoreceptors is implicated in the long latency of some antidepressant treatments. Alterations in 5-HT1A receptor levels are reported in depression and suicide. In this study, we analyzed the effect of neonatal administration of CMI on the activity of 5-HT1A receptors, both pre- and post-synaptically, by administering an agonist of 5-HT1A receptors, 8-OH-DPAT, and then subjecting the rats to the forced swimming test (FST) a common procedure used to detect signs of depression in rats. Also measured were levels of the mRNA expression of 5-HT1A receptors in the dorsal raphe (DR), the hypothalamus and the hippocampus. Wistar rats were injected twice daily with CMI at doses of 15mgkg(-1) or saline as vehicle (CON) via s.c. from postnatal day 8 for 14days. At 3-4months of age, one set of rats from each group (CON, CMI) was evaluated for the effect of a selective agonist to the 5-HT1A receptor subtype, 8-OH-DPAT, by testing in the FST. Also determined was the participation of the pre- or post-synaptic 5-HT1A receptor in the antidepressant-like action of 8-OH-DPAT. This involved administering an inhibitor of tryptophan hydroxylase, parachlorophenylalanine (PCPA), and pretreatment with 8-OH-DPAT before the FST test and to evaluate the rectal temperature and locomotor activity. The expression of the mRNA of the 5-HT1A receptors was examined in the dorsal raphe nucleus, the hypothalamus and the hippocampus using the semi-quantitative RT-PCR method. The results from this study corroborate that neonatal treatment with clomipramine induces a pronounced immobility in the FST when animals reach adulthood, manifested by a significant decrease in swimming behavior, though counts of climbing behavior were not modified. This effect was similar in magnitude when 8-OH-DPAT was administered to CON group. Furthermore, the administration of 8-OH-DPAT induces a significant and similar increase in rectal temperature and locomotor activity in both the CON as in the CMI group. Neonatal treatment with CMI resulted in a significant decrease in the expression of the mRNA of the 5-HT1A receptors in the DR (% more than vehicle) in adulthood. In the case of the postsynaptic receptors located in the hypothalamus and hippocampus, neonatal treatment with CMI induced a significant increase in the mRNA expression of the 5-HT1A receptors. These data suggest that neonatal treatment with CMI induces a downregulation of the mRNA of the 5-HT1A autoreceptors in the DR, and an increment in the expression of the postsynaptic 5-HT1A receptors. The results after the administration of PCPA and 8-OH-DPAT on FST, rectal temperature and locomotor activity for both groups suggest that the function of postsynaptic receptors remains unchanged. All together these data show that the depressive behavior observed in adulthood in this animal model may be associated with long-term alterations in the expression of the mRNA of the 5-HT1A receptors.


Subject(s)
Aging/metabolism , Clomipramine/pharmacology , Motor Activity/drug effects , Receptor, Serotonin, 5-HT1A/biosynthesis , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Animals, Newborn , Body Temperature/drug effects , Depression/chemically induced , Depression/metabolism , Down-Regulation/drug effects , Fenclonine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Immobility Response, Tonic/drug effects , Male , Raphe Nuclei/drug effects , Raphe Nuclei/metabolism , Rats , Serotonin 5-HT1 Receptor Agonists/pharmacology , Tryptophan Hydroxylase
SELECTION OF CITATIONS
SEARCH DETAIL