Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Front Immunol ; 15: 1410638, 2024.
Article in English | MEDLINE | ID: mdl-38983865

ABSTRACT

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a peripheral T-cell lymphoma characterized by a T follicular helper cell phenotype expressing PD-1 (programmed cell death-1). AITL exhibits a poor response to conventional chemotherapy, with a median 5-year overall survival of 44% and a progression-free survival of 32%. Relapse is common, resulting in a median overall survival of 6 months. Recurrent mutations are detected in genes regulating DNA methylation, including TET2, DNMT3A, and IDH2 variants, along with the prevalent RHOA G17V mutation. In this context, patients treated with the hypomethylating agent 5-azacytidine achieved overall response and complete response rates of 75% and 41%, respectively. We hypothesized that targeted therapies combining anti-PD-1 checkpoint blockers with hypomethylating agents could be efficient in AITL patients and less toxic than standard chemotherapy. Methods: Here, we report the efficacy of a regimen combining 5-azacytidine and nivolumab in nine relapsed or refractory AITL patients. Results: This regimen was well-tolerated, especially in elderly patients. The overall response rate was 78%, including four partial responses (44%) and three complete responses (33%). Allogeneic hematopoietic stem cell transplantation was performed in two patients who reached complete response. Discussion: These preliminary favorable results may serve as a basis for further investigation in prospective studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Azacitidine , Nivolumab , Humans , Nivolumab/therapeutic use , Azacitidine/therapeutic use , Female , Male , Aged , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasm Recurrence, Local/drug therapy , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/mortality , Treatment Outcome , Aged, 80 and over , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects
2.
Food Chem ; 458: 140261, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964094

ABSTRACT

5-Azacytidine (AZ) is a DNA methylation inhibitor that has recently demonstrated potential in regulating fruit quality through exogenous application. In this study, we treated mandarin fruits for 4-day storage. Noteworthy were the induced degreening and the enhanced citrus aroma of fruits under AZ treatment, involving the promotion of chlorophyll degradation, carotenoid biosynthesis, and limonene biosynthesis. Key genes associated with these processes exhibited expression level increases of up to 123.8 times. Additionally, AZ treatment activated defense-related enzymes and altered phenylpropanoid carbon allocation towards lignin biosynthesis instead of flavonoid biosynthesis. The expression levels of lignin biosynthesis-related genes increased by nearly 100 times, leading to fortified lignin that is crucial for citrus defense against Penicillium italicum. Currently, the underlying mechanisms of such intense AZ-induced changes in gene expressions remain unclear and further research could help establish AZ treatment as a viable strategy for citrus preservation.

3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731802

ABSTRACT

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Subject(s)
Arachidonate 12-Lipoxygenase , Azacitidine , DNA Methylation , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/drug therapy , Azacitidine/therapeutic use , Azacitidine/pharmacology , Male , Female , DNA Methylation/drug effects , Aged , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Middle Aged , Aged, 80 and over , Adult
4.
Curr Issues Mol Biol ; 46(3): 2468-2479, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38534772

ABSTRACT

Epigenetic modifications, including aberrant DNA methylation occurring at the promoters of oncogenes and oncosuppressor genes and histone modifications, can contribute to carcinogenesis. Aberrant methylation mediated by histone methylatransferases, alongside histones, can affect methylation of proteins involved in the regulation of pro-survival pathways such as JAK/STAT and contribute to their activation. In this study, we used DNA or histone demethylating agents, 5-Azacytidine (5-AZA) or DS-3201 (valemetostat), respectively, to treat primary effusion lymphoma (PEL) cells, alone or in combination with AG490, a Signal transducer and activator of transcription 3 (STAT3) inhibitor. Cell viability was investigated by trypan blue assay and FACS analysis. The molecular changes induced by 5-AZA and/or AG490 treatments were investigated by Western blot analysis, while cytokine release by PEL cells treated by these drugs was evaluated by Luminex. Statistical analyses were performed with Graphpad Prism® software (version 9) and analyzed by Student's t test or a nonparametric one-way ANOVA test. The results obtained in this study suggest that 5-AZA upregulated molecules that inhibit STAT3 tyrosine phosphorylation, namely Suppressor of Cytokine Signaling 3 (SOCS3) and tyrosine-protein phosphatase non-receptor type (PTPN) 6/Src homology region 2 domain-containing phosphatase-1 (SHP-1), reducing STAT3 activation and downregulating several STAT3 pro-survival targets in PEL cells. As this lymphoma is highly dependent on the constitutive activation of STAT3, 5-AZA impaired PEL cell survival, and when used in combination with AG490 JAK2/STAT3 inhibitor, it potentiated its cytotoxic effect. Differently from 5-AZA, the inhibition of the EZH1/2 histone methyltransferase by DS-3201, reported to contribute to STAT3 activation in other cancers, slightly affected STAT3 phosphorylation or survival in PEL cells, either alone or in combination with AG490. This study suggests that 5-AZA, by upregulating the expression level of SOCS3 and PTPN6/SHP1, reduced STAT3 activation and improved the outcome of treatment targeting this transcription factor in PEL cells.

5.
Vet Sci ; 11(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535869

ABSTRACT

Porcine circovirus type 2 (PCV2) is the main pathogen causing post-weaning multisystemic wasting syndrome (PMWS), which mainly targets the body's immune system and poses a serious threat to the global pig industry. 5-Azacytidine is a potent inhibitor of DNA methylation, which can participate in many important physiological and pathological processes, including virus-related processes, by inhibiting gene expression. However, the impact of 5-Aza on PCV2 replication in cells is not yet clear. We explored the impact of 5-Aza on PCV2 infection utilizing PK15 cells as a cellular model. Our objective was to gain insights that could potentially offer novel therapeutic strategies for PCV2. Our results showed that 5-Aza significantly enhanced the infectivity of PCV2 in PK15 cells. Transcriptome analysis revealed that PCV2 infection activated various immune-related signaling pathways. 5-Aza may activate the MAPK signaling pathway to exacerbate PCV2 infection and upregulate the expression of inflammatory and apoptotic factors.

6.
Virology ; 589: 109939, 2024 01.
Article in English | MEDLINE | ID: mdl-37979208

ABSTRACT

Zika virus (ZIKV) belongs to Flaviviridae, the Flavivirus genus. Its infection causes congenital brain abnormalities and Guillain-Barré syndrome. However, there are no effective vaccines, no FDA-approved drugs to manage ZIKV infection. The non-structural protein NS5 of ZIKV has been recognized as a valuable target of antivirals because of its RNA-dependent RNA polymerase (RdRp) and methyltransferase (MTase) activities essential for viral RNA synthesis. Here, we report a cell-based assay for discovering inhibitors of ZIKV NS5 and found that 5-Azacytidine potently inhibits ZIKV NS5, with EC50 of 4.9 µM. Furthermore, 5-Azacytidine suppresses ZIKV replication by inhibiting NS5-mediated viral RNA transcription. Therefore, we have developed a cell-based ZIKV NS5 assay which can be deployed to discover ZIKV NS5 inhibitors and demonstrated the potential of 5-Azacytidine for further development as a ZIKV NS5 inhibitor.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus Infection/drug therapy , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Azacitidine/pharmacology , Azacitidine/metabolism , Azacitidine/therapeutic use , Virus Replication
7.
Plant Physiol Biochem ; 203: 108075, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37801738

ABSTRACT

Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 µM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.


Subject(s)
Abscisic Acid , Solanum lycopersicum , Abscisic Acid/metabolism , Solanum lycopersicum/genetics , Trehalose , Antioxidants/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress , Stress, Physiological/genetics , Seedlings , DNA/pharmacology , Gene Expression Regulation, Plant
8.
Epigenetics ; 18(1): 2254976, 2023 12.
Article in English | MEDLINE | ID: mdl-37691391

ABSTRACT

Though DNMTs inhibitors were widely used in myelodysplastic syndrome and leukaemia, their application in solid tumours has been limited by low response rate and lack of optimal combination strategies. In gastric cancer (GC), the therapeutic implication of KRAS mutation or MEK/ERK activation for combinational use of DNMTs inhibitors with MEK/ERK inhibitors remains elusive. In this study, stable knockdown of DNMT1 expression by lentiviral transfection led to decreased sensitivity of GC cells to 5-Azacytidine. KRAS knockdown in KRAS mutant GC cells or the MEK/ERK activation by EGF stimulation in GC cells increased DNMT1 expression, while inhibition of MEK/ERK activity by Selumetinib led to decreased DNMT1 expression. 5-Azacytidine treatment, which led to dramatic decline of DNMTs protein levels and increased activity of MEK/ERK pathway, altered the activity of MEK/ERK inhibitor Selumetinib on GC cells. Both RAS-dependent gene expression signature and expression levels of multiple MEK/ERK-dependent genes were correlated with DNMT1 expression in TCGA stomach cancer samples. In conclusion, DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in GC cells. Combining DNMTs inhibitor with MEK/ERK inhibitor might be a promising strategy for patients with GC.[Figure: see text].


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , Stomach Neoplasms , Humans , Azacitidine/pharmacology , DNA Methylation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics
9.
Clin Epigenetics ; 15(1): 121, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37528470

ABSTRACT

BACKGROUND: Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive. RESULTS: Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyltransferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be at least partially reversed by treatment with the demethylating agent 5-azacytidine. CONCLUSIONS: In sum, our findings suggest that co-treatment with demethylating agents might enhance the efficacy of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical carcinoma.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Colorectal Neoplasms , Humans , Adrenocortical Carcinoma/genetics , DNA Methylation , Tumor Escape/genetics , Prognosis , Adrenal Cortex Neoplasms/genetics , DNA , CpG Islands , Phenotype , Colorectal Neoplasms/genetics
10.
Cell Rep ; 42(8): 113016, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37597186

ABSTRACT

Small cell lung cancers (SCLCs) rapidly resist cytotoxic chemotherapy and immune checkpoint inhibitor (ICI) treatments. New, non-cross-resistant therapies are thus needed. SCLC cells are committed into neuroendocrine lineage then maturation arrested. Implicating DNA methyltransferase 1 (DNMT1) in the maturation arrests, we find (1) the repression mark methylated CpG, written by DNMT1, is retained at suppressed neuroendocrine-lineage genes, even as other repression marks are erased; (2) DNMT1 is recurrently amplified, whereas Ten-Eleven-Translocation 2 (TET2), which functionally opposes DNMT1, is deleted; (3) DNMT1 is recruited into neuroendocrine-lineage master transcription factor (ASCL1, NEUROD1) hubs in SCLC cells; and (4) DNMT1 knockdown activated ASCL1-target genes and released SCLC cell-cycling exits by terminal lineage maturation, which are cycling exits that do not require the p53/apoptosis pathway used by cytotoxic chemotherapy. Inhibiting DNMT1/corepressors with clinical compounds accordingly extended survival of mice with chemorefractory and ICI-refractory, p53-null, disseminated SCLC. Lineage commitment of SCLC cells can hence be leveraged into non-cytotoxic therapy able to treat chemo/ICI-refractory SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Mice , Tumor Suppressor Protein p53/genetics , Small Cell Lung Carcinoma/drug therapy , Cell Cycle , Cell Division , Lung Neoplasms/drug therapy
11.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569529

ABSTRACT

Osteosarcoma is the most frequent primary malignant bone tumor with an annual incidence of about 400 cases in the United States. Osteosarcoma primarily metastasizes to the lungs, where FAS ligand (FASL) is constitutively expressed. The interaction of FASL and its cell surface receptor, FAS, triggers apoptosis in normal cells; however, this function is altered in cancer cells. DNA methylation has previously been explored as a mechanism for altering FAS expression, but no variability was identified in the CpG island (CGI) overlapping the promoter. Analysis of an expanded region, including CGI shores and shelves, revealed high variability in the methylation of certain CpG sites that correlated significantly with FAS mRNA expression in a negative manner. Bisulfite sequencing revealed additional CpG sites, which were highly methylated in the metastatic LM7 cell line but unmethylated in its parental non-metastatic SaOS-2 cell line. Treatment with the demethylating agent, 5-azacytidine, resulted in a loss of methylation in CpG sites located within the FAS promoter and restored FAS protein expression in LM7 cells, resulting in reduced migration. Orthotopic implantation of 5-azacytidine treated LM7 cells into severe combined immunodeficient mice led to decreased lung metastases. These results suggest that DNA methylation of CGI shore sites may regulate FAS expression and constitute a potential target for osteosarcoma therapy, utilizing demethylating agents currently approved for the treatment of other cancers.


Subject(s)
Bone Neoplasms , Osteosarcoma , Mice , Animals , fas Receptor/genetics , fas Receptor/metabolism , Bone Neoplasms/metabolism , Osteosarcoma/metabolism , Azacitidine/pharmacology , DNA Methylation , CpG Islands , Cell Line, Tumor
12.
Mol Biol Rep ; 50(9): 7371-7380, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450078

ABSTRACT

BACKGROUND: Cardiovascular diseases remain a major cause of death globally. Cardiac cells once damaged, cannot resume the normal functioning of the heart. Bone marrow derived mesenchymal stem cells (BM-MSCs) have shown the potential to differentiate into cardiac cells. Epigenetic modifications determine cell identity during embryo development via regulation of tissue specific gene expression. The major epigenetic mechanisms that control cell fate and biological functions are DNA methylation and histone modifications. However, epigenetic modifiers alone are not sufficient to generate mature cardiac cells. Various small molecules such as ascorbic acid (AA) and salvianolic acid B (SA) are known for their cardiomyogenic potential. Therefore, this study is aimed to examine the synergistic effects of epigenetic modifiers, valproic acid (VPA) and 5-azacytidine (5-aza) with cardiomyogenic molecules, AA and SA in the cardiac differentiation of MSCs. METHODS AND RESULTS: BM-MSCs were isolated, propagated, characterized, and then treated with an optimized dose of VPA or 5-aza for 24 h. MSCs were maintained in a medium containing AA and SA for 21 days. All groups were assessed for the expression of cardiac genes and proteins through q-PCR and immunocytochemistry, respectively. Results show that epigenetic modifiers VPA or 5-aza in combination with AA and SA significantly upregulate the expression of cardiac genes MEF2C, Nkx2.5, cMHC, Tbx20, and GATA-4. In addition, VPA or 5-aza pretreatment along with AA and SA enhanced the expression of the cardiac proteins connexin-43, GATA-4, cTnI, and Nkx2.5. CONCLUSION: These findings suggest that epigenetic modifiers valproic acid and 5-azacytidine in combination with ascorbic acid and salvianolic acid B promote cardiac differentiation of MSCs. This pretreatment strategy can be exploited for designing future stem cell based therapeutic strategies for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Mesenchymal Stem Cells , Humans , Valproic Acid/pharmacology , Valproic Acid/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Cardiovascular Diseases/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Azacitidine/pharmacology , Azacitidine/metabolism , Myocytes, Cardiac/metabolism , Cells, Cultured
13.
Cancers (Basel) ; 15(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37297025

ABSTRACT

Three AML cell variants (M/A, M/A* from MOLM-13 and S/A from SKM-1) were established for resistance by the same protocol using 5-azacytidine (AZA) as a selection agent. These AZA-resistant variants differ in their responses to other cytosine nucleoside analogs, including 5-aza-2'-deoxycytidine (DAC), as well as in some molecular features. Differences in global DNA methylation, protein levels of DNA methyltransferases, and phosphorylation of histone H2AX were observed in response to AZA and DAC treatment in these cell variants. This could be due to changes in the expression of uridine-cytidine kinases 1 and 2 (UCK1 and UCK2) demonstrated in our cell variants. In the M/A variant that retained sensitivity to DAC, we detected a homozygous point mutation in UCK2 resulting in an amino acid substitution (L220R) that is likely responsible for AZA resistance. Cells administered AZA treatment can switch to de novo synthesis of pyrimidine nucleotides, which could be blocked by inhibition of dihydroorotate dehydrogenase by teriflunomide (TFN). This is shown by the synergistic effect of AZA and TFN in those variants that were cross-resistant to DAC and did not have a mutation in UCK2.

14.
Clin Epigenetics ; 15(1): 75, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138342

ABSTRACT

BACKGROUND: Although most patients with diffuse large B-cell lymphoma (DLBCL) achieve complete remission after first-line rituximab-containing immunochemotherapy, up to 40% of patients relapse and require salvage therapy. Among those patients, a substantial proportion remain refractory to salvage therapy due to insufficient efficacy or intolerance of toxicities. A hypomethylating agent, 5-azacytidine, showed a chemosensitizing effect when primed before chemotherapy in lymphoma cell lines and newly diagnosed DLBCL patients. However, its potential to improve outcomes of salvage chemotherapy in DLBCL has not been investigated. RESULTS: In this study, we demonstrated the mechanism of 5-azacytidine priming as a chemosensitizer in a platinum-based salvage regimen. This chemosensitizing effect was associated with endogenous retrovirus (ERV)-induced viral mimicry responses via the cGAS-STING axis. We found deficiency of cGAS impaired the chemosensitizing effect of 5-azacytidine. Furthermore, combining vitamin C and 5-azacytidine to synergistically activate STING could be a potential remedy for insufficient priming induced by 5-azacytidine alone. CONCLUSIONS: Taken together, the chemosensitizing effect of 5-azacytidine could be exploited to overcome the limitations of the current platinum-containing salvage chemotherapy in DLBCL and the status of cGAS-STING has the potential to predict the efficacy of 5-azacytidine priming.


Subject(s)
Endogenous Retroviruses , Lymphoma, Large B-Cell, Diffuse , Humans , Endogenous Retroviruses/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/diagnosis , DNA Methylation , Rituximab/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Azacitidine/pharmacology , Azacitidine/therapeutic use , Epigenesis, Genetic
15.
Eur J Pharmacol ; 950: 175736, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37116561

ABSTRACT

The level of DNA methylation could affect the expression of tumor promoting and tumor suppressor genes. DNA methyltransferase inhibitors could reduce high methylation levels in cancer and inhibit the progression of a variety of cancers, including HCC. However, the pro-metastatic effect of DNA methyltransferase inhibitors in some cancers suggest the potential risk of their use. Whether DNA methyltransferase inhibitors also promote metastasis in HCC remains unclear. Our study will explore the effect of DNA methyltransferase inhibitor 5-Azacytidine on HCC metastasis. Our study found that 5-Azacytidine inhibited the proliferation of HCC cells while promoting in vitro and in vivo metastasis of HCC. Mechanistically, our study showed that 5-Azacytidine increased the expression of RDH16 by decreasing the methylation of RDH16 gene promoter. RDH16 is a highly methylated gene and its expression is very low in hepatocellular carcinoma. 5-Azacytidine promoted the migration of hepatocellular carcinoma cells by increasing the expression of RDH16. Our results suggest that 5-Azacytidine up-regulates the expression of RDH16 by decreasing the methylation level of RDH16, and then promoting HCC metastasis. These findings suggest that 5-Azacytidine and even other DNA methyltransferase inhibitors may have the risk of promoting metastasis in HCC treatment. RDH16 could be used as a pro-metastasis biomarker in the treatment of HCC with DNA methyltransferase inhibitors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Azacitidine/pharmacology , Azacitidine/metabolism , Cell Line, Tumor , DNA Methylation , Methyltransferases/genetics , DNA/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Metastasis
16.
Mar Biotechnol (NY) ; 25(3): 341-346, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37079122

ABSTRACT

Increasing seawater temperatures pose a great threat to marine organisms, especially those settled in fluctuating intertidal areas. DNA methylation, which can be induced by environmental variation, can influence gene expression and mediate phenotypic plasticity. However, the regulatory mechanisms of DNA methylation in gene expression-mediated adaptation to environmental stress have rarely been elucidated. In this study, DNA demethylation experiments were conducted on a typical intertidal species, the Pacific oyster (Crassostrea gigas), to determine the direct role of DNA methylation in regulating gene expression and adaptability under thermal stress. The global methylation level and the expression level of DNA methyltransferases (DNMT1, DNMT3a) showed an accordant variation trend under high temperatures, supporting that the genomic methylation status was catalyzed by DNMTs. DNA methylation inhibitor 5-Azacytidine (5-Aza) effectively inhibited DNA methylation level and decreased methylation plasticity at the 6th hour in thermal conditions. In total, 88 genes were identified as candidate DNA methylation-regulated thermal response genes; they exhibited reduced expression plasticity in response to heat stress, possibly caused by the decreased methylation plasticity. Post-heat shock, the thermal tolerance indicated by the survival curve was reduced when oysters were pretreated with 5-Aza, meaning that DNA demethylation negatively affected thermal adaptation in oysters. This study provides direct evidence for the crucial role of DNA methylation in mediating stress adaptation in marine invertebrates and contributes to the theoretical foundations underlying marine resource conservation and aquaculture.


Subject(s)
Crassostrea , DNA Demethylation , Animals , Crassostrea/genetics , Hot Temperature , Heat-Shock Response/genetics , Acclimatization
17.
J Med Microbiol ; 72(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-36927577

ABSTRACT

Introduction. Legionella pneumophila is a Gram-negative flagellated bacteria that can infect human lungs and cause a severe form of pneumonia named Legionnaires' disease.Hypothesis. We hypothesize that L. pneumophila infection induces methylomic changes in methylcytosine dioxygenases, ten-eleven translocation (TET) genes, and controls DNA methylation following infection.Aim. In the current research, we sought to further investigate DNA methylation changes in human lung epithelial cells upon L. pneumophila infection and determine how methylation inhibitor agents disturb L. pneumophila reproduction.Methodology. A549 cell line was used in L. pneumophila infection and inhibitors' treatment, including 5-azacytidine (5-AZA) and (-)-epigallocatechin-3-O-gallate (EGCG).Results. Interestingly, DNA methylation analysis of infected A549 using sodium bisulfite PCR and the methylation-sensitive HpaII enzyme showed potential methylation activity within the promoter regions of ten-eleven translocation (TET) genes located on CpG/397-8 and CpG/385-6 of TET1 and TET3, respectively. Such methylation changes in TET effectors decreased their expression profile following infection, indicated by quantitative real-time PCR (RT-qPCR), immunoblotting and flow cytometry. Furthermore, pre-treatment of A549 cells with 5-AZA or EGCG significantly decreased the bacterial reproduction characterized by the expression of L. pneumophila 16S ribosomal RNA and the c.f.u. ml-1 of bacterial particles. Moreover, both methylation inhibitors showed potent inhibition of methionine synthase (MS) expression, which was further confirmed by the docking analysis of inhibitor ligands and crystal structure of MS protein.Conclusion. These data provide evidence for the methylomic changes in the promoter region of TET1 and TET3 by L. pneumophila infection in the A549 cell line and suggest the anti-bacterial properties of 5-AZA and EGCG, as methylation inhibitors, are due to targeting the epigenetic effector methionine synthase.


Subject(s)
Legionella pneumophila , Legionnaires' Disease , Humans , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Lung/microbiology , Legionnaires' Disease/metabolism , Legionnaires' Disease/microbiology , Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Epithelial Cells/microbiology , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism
18.
Cells Dev ; 173: 203826, 2023 03.
Article in English | MEDLINE | ID: mdl-36739913

ABSTRACT

Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.


Subject(s)
Azacitidine , Hydrogels , Rats , Animals , Hydrogels/pharmacology , Hydrogels/analysis , Hydrogels/chemistry , Azacitidine/pharmacology , Extracellular Matrix/chemistry , Rats, Wistar , Muscle, Skeletal/physiology , DNA
19.
Mol Neurobiol ; 60(4): 2186-2199, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36627549

ABSTRACT

To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.


Subject(s)
Neuralgia , Trauma, Nervous System , Rats , Animals , Azacitidine , DNA Methylation , Rats, Sprague-Dawley , Neuralgia/metabolism , Hyperalgesia/metabolism , Spinal Cord/metabolism , Enzyme Inhibitors/therapeutic use , Trauma, Nervous System/metabolism , DNA/metabolism , RNA, Messenger/metabolism
20.
BMC Plant Biol ; 23(1): 47, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670371

ABSTRACT

BACKGROUND: As one of the ten most famous flowers in China, the chrysanthemum has rich germplasm with a variety of flowering induction pathways, most of which are photoperiod-induced. After treatment with DNA methylation inhibitors, it was found that DNA methylation plays an important role in flowering regulation, but the mechanism of action remains unclear. Therefore, in this study, curcumin, 5-azaC, their mixed treatment, and MET1-RNAi lines were used for transcriptome sequencing to find out how different treatments affected gene expression in chrysanthemums at different stages of flowering. RESULTS: Genomic DNA methylation levels were measured using HPLC technology. The methylation level of the whole genome in the vegetative growth stage was higher than that in the flowering stage. The methylation level of DNA in the vegetative growth stage was the lowest in the curcumin and mixed treatment, and the methylation level of DNA in the transgenic line, mixed treatment, and curcumin treatment was the lowest in the flowering stage. The flowering rate of mixed treatment and curcumin treatment was the lowest. Analysis of differentially expressed genes in transcriptomes showed that 5-azaC treatment had the most differentially expressed genes, followed by curcumin and transgenic lines, and mixed treatment had the fewest. In addition, 5-azaC treatment resulted in the differential expression of multiple DNA methylation transferases, which led to the differential expression of many genes. Analysis of differentially expressed genes in different treatments revealed that different treatments had gene specificity. However, the down-regulated GO pathway in all 4 treatments was involved in the negative regulation of the reproductive process, and post-embryonic development, and regulation of flower development. Several genes associated with DNA methylation and flowering regulation showed differential expression in response to various treatments. CONCLUSIONS: Both DNA methylase reagent treatment and targeted silencing of the MET1 gene can cause differential expression of the genes. The operation of the exogenous application is simple, but the affected genes are exceedingly diverse and untargeted. Therefore, it is possible to construct populations with DNA methylation phenotypic diversity and to screen genes for DNA methylation regulation.


Subject(s)
Chrysanthemum , Curcumin , Transcriptome , DNA Methylation , Curcumin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...