Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Article in English | MEDLINE | ID: mdl-39361726

ABSTRACT

OBJECTIVES: Steroid 5α-reductase type 2 deficiency (5α-RD2) is an autosomal recessive disorder caused by mutations in the SRD5A2 gene. This condition is characterized by reduced enzymatic activity of the 5α-reductase type 2 enzyme. Individuals with mutations in the SRD5A2 gene may exhibit various symptoms of under-masculinization in 46, XY individuals. We conducted a comprehensive analysis of the SRD5A2 gene in a patient with disorder of sex development (DSD). CASE PRESENTATION: We describe a patient with a homozygous Gly183Ser variant in the SRD5A2 gene. Their sibling also carries this variant in homozygosity, while both parents have it in a heterozygous state. The patient presents with predominantly female traits and was raised as a girl. Although the siblings exhibit distinct phenotypic characteristics, both have assumed a male gender identity. CONCLUSIONS: This study reveals different phenotypes for the two siblings, highlighting the complexity of establishing a genotype-phenotype correlation in the SRD5A2 gene. It is noteworthy that the Gly183Ser variant seems to be more prevalent among individuals of African descent, aligning with our patient's ethnic background.

2.
Mov Disord Clin Pract ; 11(5): 567-570, 2024 May.
Article in English | MEDLINE | ID: mdl-38454300

ABSTRACT

BACKGROUND: Deficiencies in the thyroid hormone transporter monocarboxylate 8 (MCT8) due to pathogenic variants in the SLC16A2 gene (OMIM 300095) result in a complex phenotype with main endocrine and neurologic symptoms. This rare disorder, named Allan-Herndon-Dudley syndrome (AHDS) (OMIM 300523), is inherited in an X-linked trait. One of the prominent features of AHDS is the presence of movement disorders (MD), which are complex and carry a significant burden of the disease. CASES: Patient 1: male with hypotonia since birth, developmental delay, dystonic posturing at 4 months and at 15 months, and startle reaction developed with sensory stimuli. Patient 2: male, at 2 months, shows hypotonia and developmental delay, paroxysmal episodes triggered by a stimulus with sudden blush, tonic asymmetric posture, and no epileptiform activity. At 10 months, generalized dystonic posturing. Patient 3: typical neurodevelopmental milestones until 6 months; at 24 months, dystonia, startle reaction, and upper motoneuron signs. CONCLUSIONS: We aim to describe our patients diagnosed with AHDS, focusing on MD phenomenology and strengthening the phenotype-genotype correlations for this rare condition.


Subject(s)
Muscle Hypotonia , Humans , Male , Muscle Hypotonia/genetics , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/deficiency , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Infant , Movement Disorders/genetics , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/diagnosis , Symporters/genetics , Symporters/deficiency , Colombia , Child, Preschool , Phenotype , Developmental Disabilities/genetics
3.
Arch. endocrinol. metab. (Online) ; 67(3): 427-441, June 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1429752

ABSTRACT

ABSTRACT Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is an autosomal recessive disorder caused by CYP21A2 gene mutations, and its molecular diagnosis is widely used in clinical practice to confirm the hormonal diagnosis. Hence, considering the miscegenation of the Brazilian population, it is important to determine a mutations panel to optimise the molecular diagnosis. The objective was to review the CYP21A2 mutations' distribution among Brazilian regions.Two reviewers screened Brazilian papers up to February 2020 in five databases. The pair-wise comparison test and Holm method were used in the statistical analysis. Nine studies were selected, comprising 769 patients from all regions. Low proportion of males and salt-wasters was identified in the North and Northeast regions, although without significant difference. Large gene rearrangements also had a low frequency, except in the Center-West and South regions (p < 0.05). The most frequent mutations were p.I172N, IVS2-13A/C>G, p.V281L and p.Q318X, and significant differences in their distributions were found: p.V281L was more frequent in the Southeast and p.Q318X in the Center-West and Northeast regions (p < 0.05). Thirteen new mutations were identified in 3.8%-15.2% of alleles, being more prevalent in the North region, and six mutations presented a founder effect gene. Genotype-phenotype correlation varied from 75.9%-97.3% among regions. The low prevalence of the salt-wasting form, affected males and severe mutations in some regions indicated pitfalls in the clinical diagnosis. The good genotype-phenotype correlation confirms the usefulness of molecular diagnosis; however, the Brazilian population also presents significant prevalence of novel mutations, which should be considered for a molecular panel.

4.
Mol Genet Metab Rep ; 31: 100879, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782622

ABSTRACT

Allan-Herndon-Dudley syndrome (AHDS) is characterized by neuropsychomotor developmental delay/intellectual disability, neurological impairment with a movement disorder, and an abnormal thyroid hormone profile. This disease is an X-linked disorder that mainly affects men. We described a female patient with a de novo variant in the SLC16A2 gene, a milder AHDS phenotype, and a skewed X chromosome inactivation profile. We discuss the mechanisms associated with the expression of the phenotypic characteristics in female patients, including SLC16A2 gene variants and cytogenomic alterations, as well as preferential inactivation of the normal X chromosome.

5.
Rev. bras. farmacogn ; 28(6): 716-723, Nov.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-977739

ABSTRACT

ABSTRACT Recently, lupin seed (Lupinus albus L., Fabaceae) products have emerged as a functional food due to their nutritional and health benefits. Numerous reports have demonstrated the hypoglycemic effects of lupin's gamma conglutin protein; nonetheless, its mechanism of action remains elusive. To understand the role of this protein on glucose metabolism, we evaluated the effect of administering L. albus' gamma conglutin on Slc2a2, Gck, and Pdx-1 gene expression as well as GLUT2 protein tissue levels in streptozotocin-induced diabetic rats. While consuming their regular diet, animals received a daily gamma conglutin dose (120 mg/kg per body weight) for seven consecutive days. Serum glucose levels were measured at the beginning and at the end of the experimental period. At the end of the trial, we quantified gene expression in pancreatic and hepatic tissues as well as GLUT2 immunopositivity in Langerhans islets. Gamma conglutin administration lowered serum glucose concentration by 17.7%, slightly increased Slc2a2 and Pdx-1 mRNA levels in pancreas, up-regulated Slc2a2 expression in the liver, but it had no effect on hepatic Gck expression. After gamma conglutin administration, GLUT2 immunopositivity in Langerhans islets of diabetic animals resembled that of healthy rats. In conclusion, our results indicate that gamma conglutin up-regulates Slc2a2 gene expression in liver and normalizes GLUT2 protein content in pancreas of streptozotocin-induced rats.

6.
Hormones (Athens) ; 17(2): 197-204, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29858846

ABSTRACT

5-α-Reductase type 2 enzyme catalyzes the conversion of testosterone into dihydrotestosterone, a potent androgen responsible for male sexual development during the fetal period and later during puberty. Its deficiency causes an autosomal recessive disorder of sex development characterized by a wide range of under-virilization of external genitalia in patients with a 46,XY karyotype. Mutations in the SRD5A2 gene cause 5-α-Reductase deficiency; although it is an infrequent disorder, it has been reported worldwide, with mutational heterogeneity. Furthermore, it has been proposed that there is no genotype-phenotype correlation, even in patients carrying the same mutation. The aim of this review was to perform an extensive search in various databases and to select those articles with a comprehensive genotype and phenotype description of the patients, classifying their phenotypes using the external masculinization score (EMS). Thus, it was possible to objectively compare the eventual genotype-phenotype correlation between them. The analysis showed that for most of the studied mutations no correlation can be established, although the specific location of the mutation in the protein has an effect on the severity of the phenotype. Nevertheless, even in patients carrying the same homozygous mutation, a variable phenotype was observed, suggesting that additional genetic factors might be influencing it. Due to the clinical variability of the disorder, an accurate diagnosis and adequate medical management might be difficult to carry out, as is highlighted in the review.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/deficiency , Disorder of Sex Development, 46,XY , Genitalia/abnormalities , Genotype , Hypospadias , Phenotype , Steroid Metabolism, Inborn Errors , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/blood , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Disorder of Sex Development, 46,XY/blood , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/pathology , Disorder of Sex Development, 46,XY/therapy , Humans , Hypospadias/blood , Hypospadias/genetics , Hypospadias/pathology , Hypospadias/therapy , Steroid Metabolism, Inborn Errors/blood , Steroid Metabolism, Inborn Errors/genetics , Steroid Metabolism, Inborn Errors/pathology , Steroid Metabolism, Inborn Errors/therapy
7.
J Neurol Sci ; 379: 58-63, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28716280

ABSTRACT

INTRODUCTION: The NR4A2 transcription factor is important in the development, survival and phenotype of dopaminergic neurons and it is postulated as a possible biomarker for Parkinson's disease (PD). Therefore, our aim was to analyze in a sample of a Mexican population with idiopathic PD, mutations (in two hotspot mutation regions) and two polymorphisms (rs34884856 in promotor and rs35479735 intronic regions) of the NR4A2 gene. We also evaluate the levels of NR4A2 gene expression in peripheral blood for a Mexican population, and identify whether they are associated with NR4A2 gene polymorphisms. METHODS: We conducted a case-control study, which included 227 idiopathic PD cases and 454 unrelated controls. Genetic variants of the NR4A2 gene were genotyped by high-resolution melting (HRM) and validated by an automated sequencing method. The gene expression was performed in peripheral blood using a real-time polymerase chain reaction. RESULTS: The rs35479735 polymorphism was associated with a higher risk of developing PD. In addition, NR4A2 gene expression was significantly decreased in patients with PD. Linkage disequilibrium analysis showed a haplotype H4 (3C-3G) that showed lower levels of expression, and contained the risk alleles for both polymorphisms. CONCLUSIONS: In summary, this is the first study in a Mexican population that considers the analysis of NR4A2 in patients with PD. An association was identified between genotype and mRNA expression levels of NR4A2 in patients with PD. These results suggest that polymorphisms and expression of the NR4A2 gene could play an important role in the risk of developing PD in Mexican populations.


Subject(s)
Genetic Association Studies/methods , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Genetic/genetics , Population Surveillance , Aged , Case-Control Studies , Cohort Studies , Female , Gene Expression , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genotype , Humans , Male , Mexico/epidemiology , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 2/biosynthesis , Parkinson Disease/diagnosis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
8.
Mol Genet Metab Rep ; 5: 98-102, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28649552

ABSTRACT

Congenital adrenal hyperplasia, one of the most frequent autosome recessive disorders, is caused by defects in steroidogenic enzymes involved in the cortisol biosynthesis. Approximately 95% of the cases are caused by abnormal function of the 21-hydroxylase enzyme. This deficiency leads to androgen excess, consequently, to virilization and rapid somatic growth with accelerated skeletal maturation. Mutations in CYP21A2 are responsible for different forms of 21-hydroxylase deficiency. Mild impairment in the enzymatic activity causes the non-classic or late-onset congenital adrenal hyperplasia that is observed with a prevalence of 1 in 1000 subjects in different populations. The present paper describes a de novo mutation that occurred in the paternal meiosis. The child, who was conceived by in vitro fertilization, presented with precocious puberty and diagnosed with non-classical 21-hydroxylase deficiency. DNA sequencing showed the compound heterozygosis for a de novo CYP21A1P/A2 chimeric gene and the p.Val281Leu mutation inherited from her mother, who was heterozygous for the mutation. The chimeric gene showed pseudogene-derived sequence from 5'-end to intron 3 and CYP21A2 sequences from intron 3 to 3'-end of the gene. Sequencing analysis of the father did not show any mutation. The multiplex ligation-dependent probe amplification (MLPA) assay did not indicate loss of DNA discarding gene deletion but confirmed the chimeric gene. In addition, supernumerary copies of CYP21A1P were observed for both parents and for the affect child. Since paternity has been confirmed, those results suggest that a de novo large gene conversion in the paternal meiosis could have occurred by misalignment of alleles bearing different copy numbers of genes in CYP21 locus.

9.
Am J Med Genet A ; 161A(8): 2088-94, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23840040

ABSTRACT

Mutations in solute carrier family 26 (sulfate transporter), member 2 (SLC26A2) gene result in a spectrum of autosomal recessive chondrodysplasias that range from the mildest recessive form of multiple epiphysial dysplasia (rMED) through the most common diastrophic dysplasia (DTD) to lethal atelosteogenesis type II and achondrogenesis IB. The clinical variability has been ascribed to quantitative effect of mutations of the sulfate transporter activity. Here we describe two Brazilian sisters, born to healthy and non consanguineous parents, with Robin sequence, mild shortening of upper and lower limbs, brachymetacarpalia/tarsalia, additional and accelerated carpal ossification, marked genu valgum, and multiple epiphysial dysplasia. This phenotype was intermediate between DTD and rMED, and both girls have a compound heterozygous mutations for the SLC26A2, a Finnish founder mutation (c.-26 + 2T>C), and R279W. This combination of mutations has been observed in individuals with different phenotypes, including DTD, DTD variant, and rMED. The distinct phenotype of our cases reinforces the hypothesis that other factors may be influencing the phenotype as previously suggested.


Subject(s)
Anion Transport Proteins/genetics , Carpal Bones/pathology , Dwarfism/genetics , Extremities/pathology , Mutation/genetics , Osteogenesis , Pierre Robin Syndrome/genetics , Adult , Brazil , Child , Dwarfism/diagnosis , Female , Heterozygote , Humans , Male , Osteochondrodysplasias , Phenotype , Pierre Robin Syndrome/diagnosis , Siblings , Sulfate Transporters
10.
Gene ; 526(2): 239-45, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23570880

ABSTRACT

CONTEXT: Molecular diagnosis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) has not been straightforward. OBJECTIVE: To conduct a comprehensive genetic analysis by Multiplex Ligation dependent Probe Amplification (MLPA) and evaluate its reliability for the molecular CAH-21OHD diagnosis. PATIENTS AND METHODS: We studied 99 patients from 90 families with salt-wasting (SW; n=32), simple-virilizing (SV; n=29), and non-classical (NC; n=29) CAH-21OHD. Molecular analysis was sequentially performed by detecting the most frequent point mutations by allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), large rearrangements by MLPA, and rare mutations by direct sequencing. Parental segregation was evaluated. RESULTS: ASO-PCR detected microconversions in 164 alleles (91.1%). MLPA identified CYP21A1P large conversions to CYP21A2 in 7 of the remaining 16 (43.7%), 30-kb deletions including the 3'-end of CYP21A1P, C4B, and the 5'-end of CYP21A2 in 3 of the 16 (18.7%), and a complete CYP21A2 deletion in one (6.3%). Five alleles (2.7%) required direct sequencing; three mutations located in the CYP21A2 gene and two derived from CYP21A1P were found. No parental segregation was observed in patients with the c.329_336del and/or the CL6 cluster mutations. These cases were not diagnosed by ASO-PCR, but MLPA detected deletions in the promoter region of the CYP21A2 gene, explaining the genotype/phenotype dissociation. CONCLUSION: Using the proposed algorithm, all alleles were elucidated. False-positive results in MLPA occurred when mutations or polymorphisms were located close to the probe-binding regions. These difficulties were overcome by the association of MLPA with ASO-PCR and paternal segregation. Using these approaches, we can successfully use MLPA in a cost-effective laboratory routine for the molecular diagnosis of CAH-21OHD.


Subject(s)
Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Point Mutation , Steroid 21-Hydroxylase/genetics , Adolescent , Alleles , Child , Child, Preschool , Exons , Genotype , Humans , Infant , Infant, Newborn , Introns , Phenotype , Polymerase Chain Reaction , Promoter Regions, Genetic , Young Adult
11.
Rev. bras. parasitol. vet ; 20(1): 42-48, jan.-mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-608254

ABSTRACT

Visceral leishmaniasis (VL) is a widely spread zoonotic disease. In Brazil the disease is caused by Leishmania (Leishmania) infantum chagasi. Peridomestic sandflies acquire the etiological agent by feeding on blood of infected reservoir animals, such as dogs or wildlife. The disease is endemic in Brazil and epidemic foci have been reported in densely populated cities all over the country. Many clinical features of Leishmania infection are related to the host-parasite relationship, and many candidate virulence factors in parasites that cause VL have been studied such as A2 genes. The A2 gene was first isolated in 1994 and then in 2005 three new alleles were described in Leishmania (Leishmania) infantum. In the present study we amplified by polymerase chain reaction (PCR) and sequenced the A2 gene from the genome of a clonal population of L. (L.) infantum chagasi VL parasites. The L. (L.) infantum chagasi A2 gene was amplified, cloned, and sequenced in. The amplified fragment showed approximately 90 percent similarity with another A2 allele amplified in Leishmania (Leishmania) donovani and in L.(L.) infantum described in literature. However, nucleotide translation shows differences in protein amino acid sequence, which may be essential to determine the variability of A2 genes in the species of the L. (L.) donovani complex and represents an additional tool to help understanding the role this gene family may have in establishing virulence and immunity in visceral leishmaniasis. This knowledge is important for the development of more accurate diagnostic tests and effective tools for disease control.


A leishmaniose visceral (LV) é uma zoonose amplamente disseminada, causada no Brasil pela Leishmania (Leishmania) infantum chagasi. Flebotomíneos vetores adquirem o agente etiológico, alimentando-se do sangue de animais contaminados, como cachorros ou animais selvagens. A doença é endêmica no Brasil, e focos de epidemia são relatados em cidades densamente povoadas por todo o país. Muitas manifestações clínicas relacionadas à infecção por Leishmania estão ligadas à relação parasito-hospedeiro, e vários possíveis fatores de virulência dos parasitas, que causam a LV, são alvos de estudo, tais como os genes A2. O gene A2 foi isolado pela primeira vez em 1994 e, em seguida, em 2005, três novos alelos foram descritos em Leishmania (Leishmania) infantum. No presente estudo, um fragmento do gene A2 de uma população clonal de L.(L.) infantum chagasi foi amplificado por PCR e sua sequência de nucleotídeos determinada. O fragmento mostrou 90 por cento de similaridade com alelos do gene A2 de Leishmania (Leishmania) donovani e de L. (L.) infantum, descritos na literatura. Entretanto, a tradução da sequência de nucleotídeos mostra diferenças na sequência de aminoácidos da proteína, que podem ser essenciais em determinar a variabilidade do gene A2 em espécies do complexo L. (L.) donovani e representa uma ferramenta adicional na compreenssão do papel dessa família de genes na virulência e imunidade da leishmaniose visceral. O conhecimento dessa variação é importante para o desenvolvimento de testes diagnósticos mais precisos e ferramentas mais eficazes no controle da doença.


Subject(s)
Animals , Dogs , Genes, Protozoan/genetics , Leishmania infantum/genetics , Alleles , Leishmania infantum/isolation & purification
12.
Int J Mol Sci ; 12(12): 9471-80, 2011.
Article in English | MEDLINE | ID: mdl-22272144

ABSTRACT

The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T) to dihydrotestosterone (DHT), and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2) was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD) for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Disorder of Sex Development, 46,XY/genetics , Membrane Proteins/genetics , Mutation, Missense , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/chemistry , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Adolescent , Amino Acid Sequence , Binding Sites , Brazil , Child , Disorder of Sex Development, 46,XY/diagnosis , Female , Homozygote , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Sequence Data , Pedigree
13.
Article in English | VETINDEX | ID: vti-441885

ABSTRACT

Visceral leishmaniasis (VL) is a widely spread zoonotic disease. In Brazil the disease is caused by Leishmania (Leishmania) infantum chagasi. Peridomestic sandflies acquire the etiological agent by feeding on blood of infected reservoir animals, such as dogs or wildlife. The disease is endemic in Brazil and epidemic foci have been reported in densely populated cities all over the country. Many clinical features of Leishmania infection are related to the host-parasite relationship, and many candidate virulence factors in parasites that cause VL have been studied such as A2 genes. The A2 gene was first isolated in 1994 and then in 2005 three new alleles were described in Leishmania (Leishmania) infantum. In the present study we amplified by polymerase chain reaction (PCR) and sequenced the A2 gene from the genome of a clonal population of L. (L.) infantum chagasi VL parasites. The L. (L.) infantum chagasi A2 gene was amplified, cloned, and sequenced in. The amplified fragment showed approximately 90% similarity with another A2 allele amplified in Leishmania (Leishmania) donovani and in L.(L.) infantum described in literature. However, nucleotide translation shows differences in protein amino acid sequence, which may be essential to determine the variability of A2 genes in the species of the L. (L.) donovani complex and represents an additional tool to help understanding the role this gene family may have in establishing virulence and immunity in visceral leishmaniasis. This knowledge is important for the development of more accurate diagnostic tests and effective tools for disease control.


A leishmaniose visceral (LV) é uma zoonose amplamente disseminada, causada no Brasil pela Leishmania (Leishmania) infantum chagasi. Flebotomíneos vetores adquirem o agente etiológico, alimentando-se do sangue de animais contaminados, como cachorros ou animais selvagens. A doença é endêmica no Brasil, e focos de epidemia são relatados em cidades densamente povoadas por todo o país. Muitas manifestações clínicas relacionadas à infecção por Leishmania estão ligadas à relação parasito-hospedeiro, e vários possíveis fatores de virulência dos parasitas, que causam a LV, são alvos de estudo, tais como os genes A2. O gene A2 foi isolado pela primeira vez em 1994 e, em seguida, em 2005, três novos alelos foram descritos em Leishmania (Leishmania) infantum. No presente estudo, um fragmento do gene A2 de uma população clonal de L.(L.) infantum chagasi foi amplificado por PCR e sua sequência de nucleotídeos determinada. O fragmento mostrou 90% de similaridade com alelos do gene A2 de Leishmania (Leishmania) donovani e de L. (L.) infantum, descritos na literatura. Entretanto, a tradução da sequência de nucleotídeos mostra diferenças na sequência de aminoácidos da proteína, que podem ser essenciais em determinar a variabilidade do gene A2 em espécies do complexo L. (L.) donovani e representa uma ferramenta adicional na compreenssão do papel dessa família de genes na virulência e imunidade da leishmaniose visceral. O conhecimento dessa variação é importante para o desenvolvimento de testes diagnósticos mais precisos e ferramentas mais eficazes no controle da doença.

SELECTION OF CITATIONS
SEARCH DETAIL