Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Heliyon ; 10(11): e32072, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912460

ABSTRACT

Background: Heart failure (HF) is a severe disease threatening people's health. The aim of this study is to find a significant biomarker inducive to predicting the prognosis of HF. Methods: GSE135055 and GSE161472 datasets were reanalyzed for exploring key genes related to HF. This single-center, prospective, observational cohort study enrolled 298 patients with or without HF from the Cardiology Department of Zhongda Hospital. Levels of ADAM8 were measured using ELISA kits. Major adverse cardiovascular events (MACEs) were defined as the composite end points of the first occurrence of rehospitalization because of HF or cardiac-related death during one-year follow-up. Results: (1) Bioinformatics analysis showed that ADAM8 was a key gene in HF via mainly regulating the mechanisms of extracellular matrix (ECM) organization. (2) Levels of ADAM8 were significantly increased in the HF group, compared to the non-failing (NF) group (p < 0.001), especially in patients with HFrEF (p < 0.05), and HFmEF (p < 0.05). The prevalence of HF in the high ADAM8 group (≧472.916 pg/mL) was significantly higher than in the low ADAM8 group (<472.916 pg/mL) (41.95 % vs 30.54 %, p < 0.01). (3) Correlation analysis revealed that ADAM8 was negatively correlated to the left ventricular ejection fraction (LVEF) (r = -0.272, p < 0.001). ROC analysis showed that the AUC of ADAM8 in predicting HF and predicting the MACE were 0.701 (p < 0.0001) and 0.683 (p < 0.0001), respectively. (4) Logistic and Cox regression both indicated that high ADAM8 expression can predict adverse prognosis of HF. Conclusions: ADAM8 may be a risk factor for HF, especially in cases of HFrEF and HFmEF. High ADAM8 expression in plasma was related to the decreased heart function, and can predict the adverse prognosis of HF.

2.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755530

ABSTRACT

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Subject(s)
ADAM Proteins , Membrane Proteins , Microglia , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-fos , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/drug therapy , Mice , Microglia/metabolism , Microglia/drug effects , ADAM Proteins/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , MAP Kinase Signaling System/drug effects , Inflammation/pathology , Inflammation/drug therapy , Cell Movement/drug effects , Humans , Antigens, CD
3.
Pharmaceutics ; 16(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675197

ABSTRACT

New targeted treatments are urgently needed to improve triple-negative breast cancer (TNBC) patient survival. Previously, we identified the cell surface protein A Disintegrin And Metalloprotease 8 (ADAM8) as a driver of TNBC tumor growth and spread via its metalloproteinase and disintegrin (MP and DI) domains. In proof-of-concept studies, we demonstrated that a monoclonal antibody (mAb) that simultaneously inhibits both domains represents a promising therapeutic approach. Here, we screened a hybridoma library using a multistep selection strategy, including flow cytometry for Ab binding to native conformation protein and in vitro cell-based functional assays to isolate a novel panel of highly specific human ADAM8 dual MP and DI inhibitory mAbs, called ADPs. The screening of four top candidates for in vivo anti-cancer activity in an orthotopic MDA-MB-231 TNBC model of ADAM8-driven primary growth identified two lead mAbs, ADP2 and ADP13. Flow cytometry, hydrogen/deuterium exchange-mass spectrometry (HDX-MS) and alanine (ALA) scanning mutagenesis revealed that dual MP and DI inhibition was mediated via binding to the DI. Further testing in mice showed ADP2 and ADP13 reduce aggressive TNBC characteristics, including locoregional regrowth and metastasis, and improve survival, demonstrating strong therapeutic potential. The continued development of these mAbs into an ADAM8-targeted therapy could revolutionize TNBC treatment.

4.
Arthritis Res Ther ; 26(1): 20, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218854

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disease that affects elderly populations worldwide, causing pain and disability. Alteration of the fibroblast-like synoviocytes (FLSs) phenotype leads to an imbalance in the synovial inflammatory microenvironment, which accelerates the progression of OA. Despite this knowledge, the specific molecular mechanisms of the synovium that affect OA are still unclear. METHODS: Both in vitro and in vivo experiments were undertaken to explore the role of ADAM8 playing in the synovial inflammatory of OA. A small interfering RNA (siRNA) was targeting ADAM8 to intervene. High-throughput sequencing was also used. RESULTS: Our sequencing analysis revealed significant upregulation of the MAPK signaling cascade and ADAM8 gene expression in IL-1ß-induced FLSs. The in vitro results demonstrated that ADAM8 blockade inhibited the invasion and migration of IL-1ß-induced FLSs, while also suppressing the expression of related matrix metallomatrix proteinases (MMPs). Furthermore, our study revealed that inhibiting ADAM8 weakened the inflammatory protein secretion and MAPK signaling networks in FLSs. Mechanically, it revealed that inhibiting ADAM8 had a significant effect on the expression of migration-related signaling proteins, specifically FSCN1. When siADAM8 was combined with BDP-13176, a FSCN1 inhibitor, the migration and invasion of FLSs was further inhibited. These results suggest that FSCN1 is a crucial downstream factor of ADAM8 in regulating the biological phenotypes of FLSs. The in vivo experiments demonstrated that ADAM8 inhibition effectively reduced synoviocytes inflammation and alleviated the progression of OA in rats. CONCLUSIONS: ADAM8 could be a promising therapeutic target for treating OA by targeting synovial inflammation.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Synoviocytes , Aged , Animals , Humans , Rats , ADAM Proteins/metabolism , ADAM Proteins/pharmacology , Arthritis, Rheumatoid/metabolism , Carrier Proteins/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , Inflammation/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA, Small Interfering/metabolism , Synoviocytes/metabolism
5.
Transl Res ; 266: 32-48, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37992987

ABSTRACT

The current study performed bioinformatics and in vitro and in vivo experiments to explore the effects of ADAM8 on the malignant behaviors and immunotherapeutic efficacy of renal clear cell carcinoma (ccRCC) Cells. The modular genes most associated with immune cells were screened. Then, prognostic risk models were constructed by univariate COX analysis, LASSO regression analysis and multivariate COX analysis, and their diagnostic value was determined. The correlation between tumor mutation load (TMB) scores and the prognosis of ccRCC patients was clarified. Finally, six key genes (ABI3, ADAM8, APOL3, MX2, CCDC69, and STAC3) were analyzed for immunotherapy efficacy. Human and mouse ccRCC cell lines and human proximal tubular epithelial cell lines were used for in vitro cell experiments. The effect of ADAM8 overexpression or knockdown on tumor formation and survival in ccRCC cells was examined by constructing subcutaneous transplanted tumor model. Totally, 636 Black module genes were screened as being most associated with immune cell infiltration. Six genes were subsequently confirmed for the construction of prognostic risk models, of which ABI3, APOL3 and CCDC69 were low-risk factors, while ADAM8, MX2 and STAC3 were high-risk factors. The constructed risk model based on the identified six genes could accurately predict the prognosis of ccRCC patients. Besides, TMB was significantly associated with the prognosis of ccRCC patients. Furthermore, ABI3, ADAM8, APOL3, MX2, CCDC69 and STAC3 might play important roles in treatment concerning CTLA4 inhibitors or PD-1 inhibitors or combined inhibitors. Finally, we confirmed that ADAM8 could promote the proliferation, migration and invasion of ccRCC cells through in vitro experiments, and further found that in in vivo experiments, ADAM8 knockdown could inhibit tumor formation in ccRCC cells, improve the therapeutic effect of anti-PD1, and prolong the survival of mice. Our study highlighted the alleviative role of silencing ADAM8 in ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Animals , Mice , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Carcinogenesis , Immunotherapy , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Cell Proliferation/genetics , Prognosis , Membrane Proteins/genetics , ADAM Proteins , Adaptor Proteins, Signal Transducing
8.
FEBS J ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097912

ABSTRACT

As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin ß-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.

9.
Cancer Cell Int ; 23(1): 165, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37568162

ABSTRACT

BACKGROUND: Breast malignancies are the predominant cancer-related cause of death in women. New methods of diagnosis, prognosis and treatment are necessary. Previously, we identified the breast cancer cell surface protein ADAM8 as a marker of poor survival, and a driver of Triple-Negative Breast Cancer (TNBC) growth and spread. Immunohistochemistry (IHC) with a research-only anti-ADAM8 antibody revealed 34.0% of TNBCs (17/50) expressed ADAM8. To identify those patients who could benefit from future ADAM8-based interventions, new clinical tests are needed. Here, we report on the preclinical development of a highly specific IHC assay for detection of ADAM8-positive breast tumors. METHODS: Formalin-fixed paraffin-embedded sections of ADAM8-positive breast cell lines and patient-derived xenograft tumors were used in IHC to identify a lead antibody, appropriate staining conditions and controls. Patient breast cancer samples (n = 490) were used to validate the assay. Cox proportional hazards models assessed association between survival and ADAM8 expression. RESULTS: ADAM8 staining conditions were optimized, a lead anti-human ADAM8 monoclonal IHC antibody (ADP2) identified, and a breast staining/scoring control cell line microarray (CCM) generated expressing a range of ADAM8 levels. Assay specificity, reproducibility, and appropriateness of the CCM for scoring tumor samples were demonstrated. Consistent with earlier findings, 36.1% (22/61) of patient TNBCs expressed ADAM8. Overall, 33.9% (166/490) of the breast cancer population was ADAM8-positive, including Hormone Receptor (HR) and Human Epidermal Growth Factor Receptor-2 (HER2) positive cancers, which were tested for the first time. For the most prevalent HR-positive/HER2-negative subtype, high ADAM8 expression identified patients at risk of poor survival. CONCLUSIONS: Our studies show ADAM8 is widely expressed in breast cancer and provide support for both a diagnostic and prognostic value of the ADP2 IHC assay. As ADAM8 has been implicated in multiple solid malignancies, continued development of this assay may have broad impact on cancer management.

10.
Cancers (Basel) ; 15(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370863

ABSTRACT

Cancer progression depends on an accumulation of metastasis-supporting physiological changes, which are regulated by cell-signaling molecules. In this regard, a disintegrin and metalloproteinase 8 (Adam8) is a transmembrane glycoprotein that is selectively expressed and induced by a variety of inflammatory stimuli. In this study, we identified Adam8 as a sox2-dependent protein expressed in MDA-MB-231 breast cancer cells when cocultured with mesenchymal-stem-cell-derived myofibroblast-like cancer-associated fibroblasts (myCAF). We have previously found that myCAF-induced cancer stemness is required for the maintenance of the myCAF phenotype, suggesting that the initiation and maintenance of the myCAF phenotype require distinct cell-signaling crosstalk pathways between cancer cells and myCAF. Adam8 was identified as a candidate secreted protein induced by myCAF-mediated cancer stemness. Adam8 has a known sheddase function against which we developed an RNA aptamer, namely, Adam8-Apt1-26nt. The Adam8-Apt1-26nt-mediated blockade of the extracellular soluble Adam8 metalloproteinase domain abolishes the previously initiated myCAF phenotype, or, termed differently, blocks the maintenance of the myCAF phenotype. Consequently, cancer stemness is significantly decreased. Xenograft models show that Adam8-Apt-1-26nt administration is associated with decreased tumor growth and metastasis, while flow cytometric analyses demonstrate a significantly decreased fraction of myCAF after Adam8-Apt-1-26nt treatment. The role of soluble Adam8 in the maintenance of the myCAF phenotype has not been previously characterized. Our study suggests that the signal pathways for the induction or initiation of the myCAF phenotype may be distinct from those involved with the maintenance of the myCAF phenotype.

11.
Cancers (Basel) ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36230833

ABSTRACT

Standard chemotherapy of Glioblastoma multiforme (GBM) using temozolomide (TMZ) frequently fails due to acquired chemoresistance. Tumor-associated macrophages and microglia (TAMs) as major immune cell population in the tumor microenvironment are potential modulators of TMZ response. However; little is known about how TAMs participate in TMZ induced chemoresistance. Members of the metzincin superfamily such as Matrix Metalloproteases (MMPs) and A Disintegrin and Metalloprotease (ADAM) proteases are important mediators of cellular communication in the tumor microenvironment. A qPCR screening was performed to identify potential targets within the ADAM and MMP family members in GBM cells. In co-culture with macrophages ADAM8 was the only signature gene up-regulated in GBM cells induced by macrophages under TMZ treatment. The relationship between ADAM8 expression and TAM infiltration in GBM was determined in a patient cohort by qPCR; IF; and IHC staining and TCGA data analysis. Moreover; RNA-seq was carried out to identify the potential targets regulated by ADAM8. CCL2 expression levels were determined by qPCR; Western blot; IF; and ELISA. Utilizing qPCR; IF; and IHC staining; we observed a positive relationship between ADAM8 expression and TAMs infiltration level in GBM patient tissues. Furthermore; ADAM8 induced TAMs recruitment in vitro and in vivo. Mechanistically; we revealed that ADAM8 activated HB-EGF/EGFR signaling and subsequently up-regulated production of CCL2 in GBM cells in the presence of TMZ treatment; promoting TAMs recruitment; which further induced ADAM8 expression in GBM cells to mediate TMZ chemoresistance. Thus; we revealed an ADAM8 dependent positive feedback loop between TAMs and GBM cells under TMZ treatment which involves CCL2 and EGFR signaling to cause TMZ resistance in GBM.

12.
Cells ; 11(19)2022 10 06.
Article in English | MEDLINE | ID: mdl-36231102

ABSTRACT

Peritoneal metastasis is the main cause of poor prognoses and high mortality in ovarian cancer patients. Abnormal protein glycosylation modification is associated with cancer malignancy. Elevated α1,3-mannosyltransferase 3 (ALG3), which catalyzes the α1,3-mannosylation of glycoproteins, has been found in some malignant tumors. However, the pathological significance of ALG3 and its regulatory mechanism in ovarian cancer metastasis is unclear. The results showed that the level of ALG3/α1,3-mannosylation was higher in human ovarian cancer tissues compared with normal ovarian tissues, as measured by Lectin chip, Western blot and Lectin blot analyses, as well as ovarian tissue microarray analysis. ALG3 was also correlated with the poor prognosis of ovarian cancer patients, according to survival analysis. The downregulation of ALG3 decreased the proliferation, stemness and peritoneal metastasis of ovarian cancer cells. The increase in urokinase plasminogen activator receptor (uPAR) α1,3-mannosylation catalyzed by ALG3 enhanced urokinase plasminogen activator (uPA)/uPAR activation and the interaction of uPAR with a disintegrin and metalloproteinase 8 (ADAM8), which promoted ovarian cancer peritoneal metastasis via the ADAM8/Ras/ERK pathway. Furthermore, decreased ALG3 suppressed ascites formation and the peritoneal metastasis of ovarian cancer cells in mice. This study highlights ALG3 as a potential diagnostic biomarker and prospective therapeutic target for ovarian cancer.


Subject(s)
Ovarian Neoplasms , Peritoneal Neoplasms , ADAM Proteins/metabolism , Animals , Antigens, CD , Biomarkers/metabolism , Carcinoma, Ovarian Epithelial , Disintegrins/metabolism , Female , Glycosylation , Humans , Lectins/metabolism , Mannosyltransferases/metabolism , Membrane Proteins/metabolism , Mice , Ovarian Neoplasms/pathology , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism
13.
Front Oncol ; 12: 826273, 2022.
Article in English | MEDLINE | ID: mdl-35371977

ABSTRACT

Glioblastoma (GBM) as the most common and aggressive brain tumor is characterized by genetic heterogeneity, invasiveness, radio-/chemoresistance, and occurrence of GBM stem-like cells. The metalloprotease-disintegrin ADAM8 is highly expressed in GBM tumor and immune cells and correlates with poor survival. In GBM, ADAM8 affects intracellular kinase signaling and increases expression levels of osteopontin/SPP1 and matrix metalloproteinase 9 (MMP9) by an unknown mechanism. Here we explored whether microRNA (miRNA) expression levels could be regulators of MMP9 expression in GBM cells expressing ADAM8. Initially, we identified several miRNAs as dysregulated in ADAM8-deficient U87 GBM cells. Among these, the tumor suppressor miR-181a-5p was significantly upregulated in ADAM8 knockout clones. By inhibiting kinase signaling, we found that ADAM8 downregulates expression of miR-181a-5p via activation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling suggesting an ADAM8-dependent silencing of miR-181a-5p. In turn, mimic miR-181a-5p transfection caused decreased cell proliferation and lower MMP9 expression in GBM cells. Furthermore, miR-181a-5p was detected in GBM cell-derived extracellular vesicles (EVs) as well as patient serum-derived EVs. We identified miR-181a-5p downregulating MMP9 expression via targeting the MAPK pathway. Analysis of patient tissue samples (n=22) revealed that in GBM, miR-181a-5p is strongly downregulated compared to ADAM8 and MMP9 mRNA expression, even in localized tumor areas. Taken together, we provide evidence for a functional axis involving ADAM8/miR-181a-5p/MAPK/MMP9 in GBM tumor cells.

14.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35216088

ABSTRACT

The metalloprotease-disintegrin ADAM8 is critically involved in the progression of pancreatic cancer. Under malignant conditions, ADAM8 is highly expressed and could play an important role in cell-cell communication as expression has been observed in tumor and immune cells of the tumor microenvironment (TME) such as macrophages. To analyze the potential role of ADAM8 in the TME, ADAM8 knockout PDAC tumor cells were generated, and their release of extracellular vesicles (EVs) was analyzed. In EVs, ADAM8 is present as an active protease and associated with lipocalin 2 (LCN2) and matrix metalloprotease 9 (MMP-9) in an ADAM8-dependent manner, as ADAM8 KO cells show a lower abundance of LCN2 and MMP-9. Sorting of ADAM8 occurs independent of TSG101, even though ADAM8 contains the recognition motif PTAP for the ESCRTI protein TSG101 within the cytoplasmic domain (CD). When tumor cells were co-cultured with macrophages (THP-1 cells), expression of LCN2 and MMP-9 in ADAM8 KO cells was induced, suggesting that macrophage signaling can overcome ADAM8-dependent intracellular signaling in PDAC cells. In co-culture with macrophages, regulation of MMP-9 is independent of the M1/M2 polarization state, whereas LCN2 expression is preferentially affected by M1-like macrophages. From these data, we conclude that ADAM8 has a systemic effect in the tumor microenvironment, and its expression in distinct cell types has to be considered for ADAM8 targeting in tumors.


Subject(s)
ADAM Proteins/metabolism , Lipocalin-2/metabolism , Matrix Metalloproteinase 9/metabolism , Membrane Proteins/metabolism , Signal Transduction/physiology , Tumor Microenvironment/physiology , Cell Line, Tumor , Cell Movement/physiology , Extracellular Vesicles/metabolism , Humans , Macrophages/metabolism , Pancreatic Neoplasms/metabolism , THP-1 Cells
15.
Exp Anim ; 71(1): 90-99, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-34615811

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is involved in cardiac fibrosis induced by angiotensin II (Ang II). A disintegrin and metalloproteinase 8 (ADAM8), a member of ADAMs family, participates in cell adhesion, proteolysis and various signaling. However, its effects on the development of cardiac fibrosis remain completely unknown. This study aimed to reveal whether ADAM8 aggravates cardiac fibrosis induced by Ang II in vivo and in vitro. The C57BL/6J mice or cardiac endothelial cells were subjected to Ang II infusion to induce fibrosis. The results showed that systolic blood pressure and diastolic blood pressure were significantly increased under Ang II infusion, and ADAM8 was up-regulated. ADAM8 inhibition attenuated Ang II-induced cardiac dysfunction. ADAM8 knockdown suppressed Ang II-induced cardiac fibrosis as evidenced by the down-regulation of CTGF, collagen I, and collagen III. In addition, the endothelial marker (VE-cadherin) was decreased, whilst mesenchymal markers (α-SMA and FSP1) were increased following Ang II infusion. However, ADAM8 repression inhibited Ang II-induced EndMT. Moreover, ADAM8 silencing repressed the activation of TGF-ß1/Smad2/Smad3 pathways. Consistent with the results in vivo, we also found the inhibitory effects of ADAM8 inhibition on EndMT in vitro. All data suggest that ADAM8 promotes Ang II-induced cardiac fibrosis and EndMT via activating TGF-ß1/Smad2/Smad3 pathways.


Subject(s)
ADAM Proteins , Angiotensin II , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Antigens, CD , Endothelial Cells , Fibrosis , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Signal Transduction
16.
Oncol Rep ; 46(6)2021 Dec.
Article in English | MEDLINE | ID: mdl-34617574

ABSTRACT

Propofol is a commonly used anesthetic with controversial effects on cancer cells. A growing number of studies have demonstrated that low concentrations of propofol are associated with tumor suppression and when used as an intravenous anesthesia improved recurrence­free survival rates for many cancers, but deeper insights into its underlying mechanism are needed. The study detailed herein focused upon the effect of propofol on pancreatic cancer cells and the mechanism by which propofol reduces A disintegrin and metalloproteinase 8 (ADAM8) expression. The ability of propofol to impact the proliferation, migration and cell cycle of pancreatic cancer cell lines was assessed in vitro. This was mechanistically explored following the identification of SP1 binding sites within ADAM8, which enabled the regulatory effects of specificity protein 1 (SP1) on ADAM8 following propofol treatment to be further explored. Ultimately, this study was able to show that propofol significantly inhibited the proliferation, migration and invasion of pancreatic cancer cells and decreased the percentage of cells in S­phase. Propofol treatment was also shown to repress ADAM8 and SP1 expression, but was unable to affect ADAM8 expression following knockdown of SP1. Moreover, a direct physical interaction between SP1 and ADAM8 was verified using co­immunoprecipitation and dual­luciferase reporter assays. Cumulatively, these results suggest that propofol represses pathological biological behaviors associated with pancreatic cancer cells through the suppression of SP1, which in turn results in lower ADAM8 mRNA expression and protein levels.


Subject(s)
ADAM Proteins/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms/drug therapy , Propofol/pharmacology , Sp1 Transcription Factor/metabolism , Anesthetics, Intravenous/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Neoplasm Invasiveness
17.
Front Cell Dev Biol ; 9: 697939, 2021.
Article in English | MEDLINE | ID: mdl-34368146

ABSTRACT

Due to a grim prognosis, there is an urgent need to detect pancreatic ductal adenocarcinoma (PDAC) prior to metastasis. However, reliable diagnostic imaging methods or biomarkers for PDAC or its precursor lesions are still scarce. ADAM8, a metalloprotease-disintegrin, is highly expressed in PDAC tissue and negatively correlates with patient survival. The aim of our study was to determine the ability of ADAM8-positive extracellular vesicles (EVs) and cargo microRNAs (miRNAs) to discriminate precursor lesions or PDAC from healthy controls. In order to investigate enrichment of ADAM8 on EVs, these were isolated from serum of patients with PDAC (n = 52), precursor lesions (n = 7) and healthy individuals (n = 20). Nanoparticle Tracking Analysis and electron microscopy indicated successful preparation of EVs that were analyzed for ADAM8 by FACS. Additionally, EV cargo analyses of miRNAs from the same serum samples revealed the presence of miR-720 and miR-451 by qPCR and was validated in 20 additional PDAC samples. Statistical analyses included Wilcoxon rank test and ROC curves. FACS analysis detected significant enrichment of ADAM8 in EVs from patients with PDAC or precursor lesions compared to healthy individuals (p = 0.0005). ADAM8-dependent co-variates, miR-451 and miR-720 were also diagnostic, as patients with PDAC had significantly higher serum levels of miR-451 and lower serum levels of miR-720 than healthy controls and reached high sensitivity and specificity (AUC = 0.93 and 1.00, respectively) to discriminate PDAC from healthy control. Thus, detection of ADAM8-positive EVs and related cargo miR-720 and miR-451 may constitute a specific biomarker set for screening individuals at risk for PDAC.

18.
Exp Ther Med ; 22(2): 893, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34257708

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury is a leading cause of heart disease and death. Decreasing the detrimental effect of I/R remains an urgent issue in clinical practice. The present study examined the interaction of the anesthetics (sevoflurane and propofol), ADAM8, and microRNA (miR)-221-5p in myocardial tissue protection in the hypoxia-reoxygenation (H/R) model. H9C2 cells were cultured and subjected to H/R stimulation for further verifications in vitro. Reverse transcription-quantitative PCR or western blotting was performed to evaluate mRNA or protein expression levels. Cell Counting Kit-8, BrdU, and caspase-3 activity assays were performed to investigate cell viability, proliferation and apoptosis. A dual-luciferase reporter assay was performed to verify the association between miR-221-5p and ADAM8. Sevoflurane had greater protective effects on the life of cardiomyocytes with H/R injury compared with propofol by promoting cell viability, proliferation and inhibiting apoptosis. Concurrently, compared with propofol-treated H/R injured cardiomyocytes, the expression level of ADAM8 in sevoflurane-treated H/R injured cardiomyocytes was higher. In addition, overexpression of ADAM8 promoted the cell viability and proliferation of sevoflurane-treated cardiomyocytes with H/R injury but inhibited cell apoptosis, while the downregulation of miR-221-5p showed an opposite trend to that of ADAM8 overexpression. The present data provide evidence that sevoflurane can mediate the miR-221-5p/ADAM8 axis, playing a better protective role compared with propofol in cardiomyocytes with H/R injury.

19.
Bioengineered ; 12(1): 1676-1688, 2021 12.
Article in English | MEDLINE | ID: mdl-33960283

ABSTRACT

Colorectal cancer (CRC) is one of the most common tumors, ranking second in the global cause of death from cancer. The prognosis of advanced patients is still very poor. In this study, hub modules with the highest association with tumor-infiltrating immune cells were identified by weighted gene co-expression network analysis based on CRC expression data from the Gene Expression Omnibus database. Next, three hub genes (ADAM8, IL-1A, VAV3) related to infiltrating immune cells were identified by co-expression network and prognostic analysis. After analysis and verification of the TIMER database, ADAM8 was selected as a prognostic biomarker. Finally, the result of functional test showed that ADAM8 gene expression down-regulation partially reversed the immune tolerance of CRC cells to TILs. By bioinformatics analysis methods and the experimental techniques, we identified ADAM8 as a prognostic biomarker and clinical therapeutic target related to tumor-infiltrating immune cells in CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Lymphocytes, Tumor-Infiltrating/immunology , ADAM Proteins/genetics , Cell Death , Cell Line, Tumor , Colorectal Neoplasms/pathology , Gene Knockdown Techniques , Genes, Neoplasm , Humans , Membrane Proteins/genetics , Prognosis , Reproducibility of Results , Signal Transduction/genetics
20.
Biol Chem ; 402(2): 195-206, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33544472

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer with a median survival of only 15 months. To complement standard treatments including surgery, radiation and chemotherapy, it is essential to understand the contribution of the GBM tumor microenvironment. Brain macrophages and microglia particularly contribute to tumor angiogenesis, a major hallmark of GBM. ADAM8, a metalloprotease-disintegrin strongly expressed in tumor cells and associated immune cells of GBMs, is related to angiogenesis and correlates with poor clinical prognosis. However, the specific contribution of ADAM8 to GBM tumorigenesis remains elusive. Knockdown of ADAM8 in U87 glioma cells led to significantly decreased angiogenesis and tumor volumes of these cells after stereotactic injection into striate body of mice. We found that the angiogenic potential of ADAM8 in GBM cells and in primary macrophages is mediated by the regulation of osteopontin (OPN), an important inducer of tumor angiogenesis. By in vitro cell signaling analyses, we demonstrate that ADAM8 regulates OPN via JAK/STAT3 pathway in U87 cells and in primary macrophages. As ADAM8 is a dispensable protease for physiological homeostasis, we conclude that ADAM8 could be a tractable target to modulate angiogenesis in GBM with minor side-effects.


Subject(s)
ADAM Proteins/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/metabolism , Osteopontin/metabolism , ADAM Proteins/deficiency , ADAM Proteins/genetics , Animals , Brain Neoplasms/pathology , Cell Proliferation , Cells, Cultured , Glioblastoma/pathology , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...