Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 417: 135964, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36934709

ABSTRACT

Removal of aflatoxin is an urgent issue in agricultural products. A porous graphitic carbon nitride/graphene oxide hydrogel microsphere (CN/GO/SA) was synthesized and used to degrade AFB1 in peanut oil. CN/GO/SA was characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD) and FT-IR. The introduction of GO significantly improved the adsorption capacity and visible light activity of photocatalysts. About 98.4% AFB1 in peanut oil was removed by 20% CN/GO/SA under visible light for 120 min. ‧O2- and h+ were the main active species during photoreaction, and five degradation products were identified by UPLC-Q-Orbitrap MS analysis. At the same time, the quality of treated peanut oil was still acceptable. More importantly, CN/GO/SA showed excellent cycle stability, and the degradation rate of AFB1 in peanut oil remained above 95% after five-time recycling. This work provides a practical way for developing efficient and sustainable photocatalysts to degrade mycotoxins in edible oil.


Subject(s)
Aflatoxin B1 , Hydrogels , Peanut Oil , Aflatoxin B1/analysis , Spectroscopy, Fourier Transform Infrared , Porosity , Microspheres
2.
World J Microbiol Biotechnol ; 39(1): 24, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36422721

ABSTRACT

Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus (A. flavus) and Aspergillus. parasiticus (A. parasiticus), mainly during grain storage. The efficacy of the freeze-dried culture filtrate of Streptomyces philanthi (S. philanthi) strain RL-1-178 (DCF) on degradation of aflatoxin B1 (AFB1) were evaluated and its bioactive compounds were identified. The DCF at a concentration of 9.0% (w/v) completely inhibited growth and AFB1 production of A. parasiticus TISTR 3276 and A. flavus PSRDC-4 after 7 days tested in yeast-extract sucrose (YES) medium and on stored maize grains after 28 and 14 days incubation, respectively. This indicated the more tolerance of A. parasiticus over A. flavus. The DCF and bacterial cells of S. philanthi were capable to degrade AFB1 by 85.0% and 100% for 72 h and 8 days, respectively. This confirmed the higher efficacy of the DCF over the cells. After separation of the DCF on thin-layer chromatography (TLC) plate by bioautography bioassay, each active band was identified by liquid chromatography-quadrupole time of flight mass spectrometer (LC-Q-TOF MS/MS). The results revealed two compounds which were identified as azithromycin and an unknown based on mass ions of both ESI+ and ESI- modes. The antifungal metabolites in the culture filtrate of S. philanthi were proved to degrade aflatoxin B1. It could be concluded that the DCF may be applied to prevent the growth of the two aflatoxin-producing fungi as well as the occurrence of aflatoxin in the stored maize grains.


Subject(s)
Aflatoxins , Streptomyces , Antifungal Agents/chemistry , Zea mays/microbiology , Streptomyces/metabolism , Aflatoxin B1/metabolism , Tandem Mass Spectrometry , Aspergillus flavus , Aflatoxins/metabolism , Fungi/metabolism
3.
Biology (Basel) ; 11(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35625502

ABSTRACT

Aflatoxin B1 (AFB1) is one of the most toxic, naturally occurring carcinogen compounds and is produced by specific strains of fungi. Crop contamination with AFB1 can cause huge economic losses and serious health problems. Many studies have examined the microbiological degradation of AFB1, especially the use of efficient AFB1-degrading microorganisms, to control AFB1 contamination. Here, we reported the identification of a new Rhodococcus pyridinivorans strain (4-4) that can efficiently degrade AFB1 (degradation rate 84.9%). The extracellular component of this strain showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). The effects of proteinase K, SDS, temperature, pH, incubation time, and AFB1 concentration on the AFB1 degradation ability of the extracellular component were investigated. We sequenced the complete genome of this strain, encoding 5246 protein-coding genes and 169 RNA genes on a circular chromosome and two plasmids. Comparative genomic analysis revealed high homology with other Rhodococcus strains with high AFB1-degradation ability. Further proteomic analyses of this strain identified a total of 723 proteins in the extracellular component, including multiple potential AFB1-degrading enzymes, along with enzymes that are reported to response to AFB1 treatment. Overall, the results demonstrate that R. pyridinivorans 4-4 would be an excellent candidate for the biodegradation and detoxification of AFB1 contamination.

SELECTION OF CITATIONS
SEARCH DETAIL