Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.727
Filter
1.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963051

ABSTRACT

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Lipogenesis , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Lipogenesis/genetics , Lipogenesis/drug effects , AMP-Activated Protein Kinases/metabolism , Hep G2 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , AMP-Activated Protein Kinase Kinases/genetics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/drug therapy , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167343, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986822

ABSTRACT

AIM: To investigate the impact of exosomes released by Porphyromonas gingivalis-Lipopolysaccharide activated THP-1 macrophages and human periodontal ligament fibroblasts on hepatocyte fat metabolism. RESULTS: The liver of rats with experimental periodontitis showed obvious steatosis and inflammation compared with control rats. The culture supernatant of macrophages and human periodontal ligament fibroblasts (hPDLFs), when stimulated with Pg-LPS, induced lipogenesis in HepG2 cells. Furthermore, the lipid-promoting effect was effectively inhibited by the addition of the exosome inhibitor GW4869. Subsequently, we isolated exosomes from cells associated with periodontitis. Exosomes released by Pg-LPS-stimulated macrophages and hPDLFs are taken up by hepatocytes, causing mRNA expression related to fat synthesis, promoting triglyceride synthesis, and aggravating NAFLD progression. Finally, two sets of exosomes were injected into mice through the tail vein. In vivo experiments have also demonstrated that periodontitis-associated exosomes promote the development of hepatic injury and steatosis, upregulate SCD-1 expression and inhibit the AMPK signaling pathway. CONCLUSIONS: In conclusion, we found that exosomes associated with periodontitis promote hepatocyte adipogenesis by increasing the expression of SCD-1 and suppressing the AMPK pathway, which indicates that close monitoring of the progression of stomatopathy associated extra-oral disorders is important and establishes a theoretical foundation for the prevention and management of fatty liver disease linked to periodontitis.

3.
Sci Rep ; 14(1): 16314, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009692

ABSTRACT

The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.


Subject(s)
Glucose , Graphite , Homeostasis , Infrared Rays , Physical Conditioning, Animal , Animals , Mice , Glucose/metabolism , Graphite/pharmacology , Graphite/chemistry , AMP-Activated Protein Kinases/metabolism , Male , Gastrointestinal Microbiome , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Hyperthermia, Induced/methods , Exercise Tolerance , Microbiota
4.
Acta Diabetol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954041

ABSTRACT

BACKGROUND: This study investigates the therapeutic mechanisms of Cai's Herbal Tea in Type 1 Diabetes Mellitus (T1DM) mice, focusing on its effects on mitochondrial change and autophagy via the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. METHODS: The composition of Cai's Herbal Tea was analyzed by Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry (UHPLC-Q/TOF-MS). C57BL/6 mice and Min6 pancreatic beta cells were divided into control, diabetic mellitus (DM)/high glucose (HG), and treatment groups (low, medium, and high doses of Cai's Tea, and Metformin). Key physiological parameters, pancreatic islet health, Min6 cell morphology, viability, and insulin (INS) secretion were assessed. Small Interfering RNA-AMPK (si-AMPK) was utilized to confirm the pathway involvement. RESULTS: Cai's Herbal Tea improved body weight, pancreatic islet pathological injury, and INS secretion whereas reduced total triglycerides, fasting blood sugar, and Interferon gamma (INF-γ) in T1DM mice, particularly at higher doses. In Min6 cells, Cai's Tea mitigated HG-induced damage and proinflammatory response, enhancing cell viability and INS secretion. Notably, it reduced swelling and improved cristae structure in treated groups of mitochondria and promoted autophagy via the AMPK-mTOR pathway, evidenced by increased LC3II/LC3I and P-AMPK/AMPK ratios, and decreased P-mTOR/mTOR and P62 expressions in pancreatic islet ß-cells. Furthermore, these effects were converted by si-AMPK interference. CONCLUSION: Cai's Herbal Tea exhibits significant therapeutic efficacy in T1DM mice by improving mitochondrial health and inducing autophagy through the AMPK-mTOR pathway in pancreatic islet ß-cells. These findings highlight its potential as a therapeutic approach for T1DM management.

5.
Inflammation ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954260

ABSTRACT

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a metabolic dysregulation-related disorder that is generally characterized by lipid metabolism dysfunction and an excessive inflammatory response. Currently, there are no authorized pharmacological interventions specifically designed to manage NASH. It has been reported that Ginkgolide C exhibits anti-inflammatory effects and modulates lipid metabolism. However, the impact and function of Ginkgolide C in diet-induced NASH are unclear. METHODS: In this study, mice were induced by a Western Diet (WD) with different doses of Ginkgolide C with or without Compound C (adenosine 5 '-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor). The effects of Ginkgolide C were evaluated by assessing liver damage, steatosis, fibrosis, and AMPK expression. RESULTS: The results showed that Ginkgolide C significantly alleviated liver damage, steatosis, and fibrosis in the WD-induced mice. In addition, Ginkgolide C markedly improved insulin resistance and attenuated hepatic inflammation. Importantly, Ginkgolide C exerted protective effects by activating the AMPK signaling pathway, which was reversed by AMPK inhibition. CONCLUSION: Ginkgolide C alleviated NASH induced by WD in mice, potentially via activating the AMPK signaling pathway.

6.
Int Immunopharmacol ; 138: 112545, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955026

ABSTRACT

Neuroinflammation, characterized by microglial activation and the release of multiple inflammatory mediators, is a key factor in acute glaucomatous injury leading to retinal ganglion cell (RGC) death and ultimately irreversible vision loss. Irisin, a novel exercise-induced myokine, has demonstrated anti-inflammatory activity in ischemia/reperfusion injuries across multiple organs and has displayed a significant neuroprotective role in experimental stroke disease models. This study examined the protective impact of irisin and investigated its potential mechanism involved in this process utilizing an acute ocular hypertension (AOH)-induced retinal injury model in mice and a microglia inflammation model induced by lipopolysaccharide (LPS). There was a transient downregulation of irisin in the retina after AOH injury, with parallel emergence of retinal neuroinflammation and RGC death. Irisin attenuated retinal and optic nerve damage and promotes the phenotypic conversion of microglia from M1 to M2. Mechanistically, irisin significantly upregulated the expression of integrin αVß5, p-AMPK, and autophagy-related markers. Integrin αVß5 was highly expressed on microglia but hardly expressed on RGC. The integrin αVß5 inhibitor cilengitide, the AMPK inhibitor dorsomorphin, and the autophagy inhibitor 3-Methyladenine (3-MA) blocked the neuroprotective effects of irisin. Our results suggest irisin attenuates acute glaucoma-induced neuroinflammation and RGC death by activating integrin αVß5/AMPK in microglia and promoting autophagy. It should be considered a potential neuroprotective therapy for acute glaucoma.

7.
Article in English | MEDLINE | ID: mdl-38963551

ABSTRACT

Fisetin, a polyphenolic flavonoid, exhibits numerous pharmacological activities against metabolic syndromes. The present research aims to explore the therapeutic efficacy of fisetin in experimental polycystic ovary syndrome (PCOS). Female Sprague-Dawley rats were administered mifepristone (20 mg/kg/day) to induce PCOS. PCOS rats were treated with fisetin (20 mg/kg and 40 mg/kg) and further compared with metformin HCl, the conventional drug for PCOS. The mechanism of fisetin was explored using dorsomorphin (an AMPK inhibitor). Then, rats were sacrificed for further analysis of biochemical and histological parameters. PCOS rats exhibited irregular estrous cycles, increased serum testosterone (4.72 ± 0.139 ng/ml), estradiol (750.2 ± 16.56 pg/ml), LH (30.33 ± 1.563 mIU/ml), HOMA-IR (1.115 ± 0.049), TNF-α (86.59 ± 3.93 pg/ml), IL-6 (55.34 ± 4.432 pg/ml), and TBARS (3.867 ± 0.193 µmol/mg) along with declined progesterone (11.67 ± 1.54 ng/ml), FSH (13.33 ± 1.256 mIU/ml), GSH (33.47 ± 1.348 µmol/mg) levels, and SOD (2.163 ± 0.298 U/mg) activity as compared to normal control group. Fisetin high dose significantly lowers testosterone (3.014 ± 0.234 ng/ml), estradiol (533.7 ± 15.39 pg/ml), LH (16.67 ± 1.62 mIU/ml), HOMA-IR (0.339 ± 0.20), TNF-α (46.02 ± 2.66 pg/ml), IL-6 (31.77 ± 3.47 pg/ml), and TBARS (1.747 ± 0.185 µmol/mg) and enhances progesterone (33.17 ± 1.447 ng/ml), FSH (27.17 ± 1.42 mIU/ml), GSH (60.35 ± 1.1.102 µmol/mg) levels, and SOD (4.513 ± 0.607 U/mg) activity. The histology of ovarian tissues shows a significant increase in cystic follicles in PCOS rats compared with the normal control group. These alterations were attenuated with fisetin treatment. Administration of dorsomorphin with fisetin can reverse the beneficial effects of fisetin in PCOS rats. Altogether, these present findings highlight the potential of fisetin as a promising therapeutic intervention for the management of PCOS by modulating AMPK/SIRT1 signaling in rats.

8.
Mol Biol Rep ; 51(1): 785, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951450

ABSTRACT

BACKGROUND: Kaempferia parviflora Wall. ex. Baker (KP) has been reported to exhibit anti-obesity effects. However, the detailed mechanism of the anti-obesity effect of KP extract (KPE) is yet to be clarified. Here, we investigated the effect of KPE and its component polymethoxyflavones (PMFs) on the adipogenic differentiation of human mesenchymal stem cells (MSCs). METHODS AND RESULTS: KPE and PMFs fraction (2.5 µg/mL) significantly inhibited lipid and triacylglyceride accumulation in MSCs; lipid accumulation in MSCs was suppressed during the early stages of differentiation (days 0-3) but not during the mid (days 3-7) or late (days 7-14) stages. Treatment with KPE and PMFs fractions significantly suppressed peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and various adipogenic metabolic factors. Treatment with KPE and PMFs fraction induced the activation of AMP-activated protein kinase (AMPK) signaling, and pretreatment with an AMPK signaling inhibitor significantly attenuated KPE- and PMFs fraction-induced suppression of lipid formation. CONCLUSIONS: Our findings demonstrate that KPE and PMFs fraction inhibit lipid formation by inhibiting the differentiation of undifferentiated MSCs into adipocyte lineages via AMPK signaling, and this may be the mechanism underlying the anti-obesity effects of KPE and PMFs. Our study lays the foundation for the elucidation of the anti-obesity mechanism of KPE and PMFs.


Subject(s)
AMP-Activated Protein Kinases , Adipogenesis , Cell Differentiation , Flavones , Mesenchymal Stem Cells , Plant Extracts , Signal Transduction , Zingiberaceae , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Adipogenesis/drug effects , Plant Extracts/pharmacology , Zingiberaceae/chemistry , AMP-Activated Protein Kinases/metabolism , Flavones/pharmacology , Cell Differentiation/drug effects , Signal Transduction/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cells, Cultured
9.
Int Immunopharmacol ; 138: 112640, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981225

ABSTRACT

As a severe neurological disorder, Parkinson's disease (PD) is distinguished by dopaminergic neuronal degeneration in the substantia nigra (SN), culminating in motor impairments. Several studies have shown that activation of the AMPK/SIRT1/PGC1α pathway contributes to an increase in mitochondrial biogenesis and is a promising candidate for the management of PD. Furthermore, turning on the AMPK/SIRT1/PGC1α pathway causes autophagy activation, which is fundamental for maintaining neuronal homeostasis. Interestingly, ezetimibe is an antihyperlipidemic agent that was recently reported to possess pleiotropic properties in neurology by triggering the phosphorylation and activation of AMPK. Thus, our study aimed to investigate the neuroprotective potential of ezetimibe in rats with rotenone-induced PD by activating AMPK. Adult male Wistar rats received rotenone (1.5 mg/kg, s.c.) every other day for 21 days to induce experimental PD. Rats were treated with ezetimibe (5 mg/kg/day, i.p.) 1 h before rotenone. Ezetimibe ameliorated the motor impairments in open field, rotarod and grip strength tests, restored striatal dopamine and tyrosine hydroxylase in the SN, up-regulated p-AMPK, SIRT1, and PGC1α striatal expression, upsurged the expression of ULK1, beclin1, and LC3II/I, reduced Bax/Bcl2 ratio, and alleviated rotenone-induced histopathological changes in striatum and SN. Our findings also verified the contribution of AMPK activation to the neuroprotective effect of ezetimibe by using the AMPK inhibitor dorsomorphin. Together, this work revealed that ezetimibe exerts a neuroprotective impact in rotenone-induced PD by activating AMPK/SIRT-1/PGC-1α signaling, enhancing autophagy, and attenuating apoptosis. Thus, ezetimibe's activation of AMPK could hold significant therapeutic promise for PD management.

10.
Transl Oncol ; 47: 102052, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981246

ABSTRACT

Inducing immunogenic cell death (ICD) process may be an important antitumor strategy in ovarian cancer (OC). Metformin (Met) has been shown to have antitumor effects in OC, but whether it mediates the ICD to inhibit OC process is unclear. Human OC cell lines (SKOV3 and A2780) were treated with Met. Dendritic cell (DC) and CD8+T cells were isolated from the peripheral blood mononuclear cells of volunteers. Cell counting kit 8 assay was used to measure cell viability, and immunofluorescence staining was performed to detect the percentages of membrane and intracellular calreticulin (CRT). CRT level, DC maturation and effector cell activation were evaluated by flow cytometry. The levels of IL-10 and IFN-γ, as well as the releasements of HMGB1 and ATP, were detected using corresponding kits. The protein levels of heat shock protein 70/90 (HSP70/90) and AMPKα were tested by western blot analysis, and the mRNA levels of CD80, CD86, IL-10, and IFN-γ were measured by quantitative real-time PCR. Colony formation assay was utilized for assessing cell cytotoxicity. Mice transplanted tumor model was constructed to assess the effect of Met on OC tumor growth, and immunohistochemistry staining was used to analyze CD80+ and CD86+ cells in mice tumor tissues. Our data showed that Met inhibited OC cell viability and induced CRT exposure. Besides, Met could promote the release of HMGB1 and ATP, as well as induce DC maturation. In vivo experiments suggested that Met restrained OC tumor growth via activating antitumor immune response. Moreover, Met activated AMPK pathway, and silenced AMPK pathway reversed the promoting effect of Met on CRT exposure and the releasements of HMGB1 and ATP in OC cells. In conclusion, Met induced ICD-mediated immune destruction in OC via activating AMPK pathway, indicating that Met might be used in the immunotherapy of OC.

11.
Biochem Biophys Res Commun ; 729: 150343, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986259

ABSTRACT

Pathological cardiac hypertrophy is associated with adverse cardiovascular events and can gradually lead to heart failure, arrhythmia, and even sudden death. However, the current development of treatment strategies has been unsatisfactory. Therefore, it is of great significance to find new and effective drugs for the treatment of myocardial hypertrophy. We found that carnosol can inhibit myocardial hypertrophy induced by PE stimulation, and the effect is very significant at 5 µM. Moreover, we demonstrated that 50 mg/kg of carnosol protect against cardiac hypertrophy and fibrosis induced by TAC surgery in mice. Mechanically, we proved that the inhibitory effect of carnosol on cardiac hypertrophy depends on its regulation on the phosphorylation activation of AMPK. In conclusion, our study suggested that carnosol may be a novel drug component for the treatment of pathological cardiac hypertrophy.

12.
Int Immunopharmacol ; 138: 112632, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986300

ABSTRACT

Uric acid nephropathy (UAN), caused by a common metabolic disorder resulting from hyperuricemia (HUA), has an increasing incidence. Previous studies have shown that berberine (BBR) has clear urate-lowering and anti-inflammatory effects in UAN mice, but its mechanism needs to be further clarified. Therefore, Potassium Oxonate (PO) combined with hypoxanthine (HX) induced UAN mice model and MSU induced THP-1 cells polarization model were adopted to investigate the mechanism of BBR on UAN in terms of tissue distribution and molecular pharmacology. Study unveiled that BBR was first found to bind to red blood cells (RBCs), which were recognized and phagocytosed by monocytes, then recruited by the injured kidney. Subsequently, BBR was enriched and functional in damaged kidney. The results of in vivo experiments revealed that, BBR reduced UA, BUN, CRE levels as well as the release of TNF-α, IL-1ß, IL-18 and IL-6, and alleviated renal injury in UAN mice, as consistent with previous studies. Additionally, BBR decreased MCP-1 expression, while diminishing macrophage infiltration and decreasing M1 proportion as determined by RT-qPCR. In vitro experiments, demonstrated that MSU promoted inflammatory polarization of THP-1 cells, while BBR reduced synthesis of inflammatory factors and inhibited MSU-induced inflammatory polarization. These effects of BBR were dependent on AMPK activation along with indirect inhibition of NF-κB signaling pathway mediated. However, the anti-inflammatory and macrophage polarization regulation effects of BBR were completely reversed upon administration of Compound C, an AMPK inhibitor. Therefore, BBR ameliorated kidney injury via regulating macrophage polarization through AMPK, which has therapeutic potential for UAN patients.

13.
Gene ; : 148752, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986750

ABSTRACT

The hepatocyte nuclear factor-1 (HNF1ɑ) is a transcription factor that contributes to several kinds of cancer progression. However, very little is known regarding the mechanisms underlying the activity of HNF1ɑ. We aimed to explore the role of HNF1ɑ in the progress of colorectal cancer (CRC) and elucidate its molecular mechanism. HNF1ɑ expression was upregulated in CRC samples and high expression of HNF1ɑ was associated with poor prognosis of CRC patients. HNF1α knockdown and overexpression inhibited and promoted proliferation, migration and invasion of CRC cells both in vitro and in vivo respectively. Mechanistically, HNF1ɑ increased the transcriptional activity of hexokinase domain component 1(HKDC1)promoter, thus activated AKT/AMPK signaling. Meanwhile, HKDC1 upregulation was important for the proliferation, migration and invasion of CRC cells and knockdown of HKDC1 significantly reversed the proliferation, migration and invasion induced by HNF1α overexpression. Taken together, HNF1ɑ contributes to CRC progression and metastasis through binding to HKDC1 and activating AKT/AMPK signaling. Targeting HNF1ɑ could be a potential therapeutic strategy for CRC patients.

14.
Essays Biochem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994736

ABSTRACT

Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.

15.
Poult Sci ; 103(9): 104011, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38991386

ABSTRACT

Exposure to copper (Cu) has been associated with metabolic disorders in animals and humans, but the underlying mechanism remains unclear. One-day-old broiler chickens, numbering a total of 192, were nourished with dietary intakes that contained varying concentrations of Cu, specifically 11, 110, 220, and 330 mg/kg of Cu, for a period extending over a duration of 7 wk. As a result of the study, Cu exposure resulted in vacuolization, fragmentation of mitochondria cristae, and the increase of autophagosomes in hepatocytes. Metabolomics analysis illustrated that Cu caused a total of 59 different metabolites in liver, predominantly associated with the glycerophospholipid metabolic pathway, leading to metabolic disruption. Moreover, high-Cu diet markedly reduced the levels of AMPKα1, p-AMPKα1, mTOR, and p-mTOR and enhanced the expression levels of the autophagy-related factors (Atg5, Dynein, Beclin1, and LC3-II). Overall, Cu exposure caused chicken liver injury and resulted in disturbed metabolic processes and mediated autophagy primarily through the AMPK-mTOR axis.

16.
Cells ; 13(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38994998

ABSTRACT

Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.


Subject(s)
Cell Proliferation , Cyclic AMP Response Element-Binding Protein , Glucose Transporter Type 3 , Iron , Liver , Cell Proliferation/drug effects , Animals , Humans , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 3/genetics , Hep G2 Cells , Liver/metabolism , Liver/drug effects , Liver/pathology , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Iron/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Quaternary Ammonium Compounds/pharmacology , Ferric Compounds/pharmacology , Mice, Inbred C57BL , Signal Transduction/drug effects , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , AMP-Activated Protein Kinase Kinases/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics
17.
Food Chem ; 459: 140371, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39002333

ABSTRACT

The increase of coarse particulate matter (PM10) due to industrialization and urban sprawl has been identified as a significant contributor to air pollution and a threat to human skin health and premature aging. The objective was to analyze the antioxidant effect of phenolic-enriched extracts (PHE) obtained from black bean (BB) and pinto bean (PB) varieties (Phaseolus vulgaris L.) and pure phenolic compounds (rutin, catechin, and gallic acid) in two human dermal fibroblasts cell lines exposed to PM10. Petunidin-3-O-glucoside was the most abundant anthocyanin, with 57 ± 0.9 mg/g dry extract (DE) in PHE-BB. Gallic acid was the prevalent phenolic acid with 8.2 ± 2.8 mg/g DE in PHE-BB (p < 0.05). Hs27 and Hs68 cell lines were exposed to PM10 (100 µg/mL) to induce oxidative stress; PHE-BB reduced it by 69% ± 12 and PHE-PB by 80% ± 5 relative to PM10 treatment (p < 0.05). Delphinidin-3-O-glucoside showed the highest binding affinity in adenosine monophosphate-activated protein kinase (AMPK) with -9.0 kcal/mol and quercetin-3-D-galactoside with -6.9 kcal/mol in sirtuin 1 (Sirt1). Rutin increased the expression of Sirt1 by 30% (p < 0.05) in the Hs27 cell line treated with PM10. Common bean extracts can potentially reduce oxidative stress induced by PM10 in human dermal fibroblasts.

18.
J Biol Chem ; : 107549, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002673

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry (IP-MS) analysis. The interaction between ACADM and NSP4 was subsequently corroborated through co-immunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid ß-oxidation affected PEDV replication for the first time, inhibition of fatty acid ß-oxidation reduced PEDV replication. ACADM decreased PEDV-induced ß-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid (FFA) levels and subsequent ß-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.

19.
Tissue Cell ; 89: 102472, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39003914

ABSTRACT

Cerebral ischemia-reperfusion injury involves a series of pathophysiological processes that occur when blood supply is restored after cerebral vascular obstruction, leading to neuronal damage. The AMPK/ERK1/2 signaling pathway has been identified as crucial in this process, although the exact mechanisms underlying the induction of ischemia-reperfusion injury remain unclear. In this study, we investigated the involvement of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion by establishing animal and cell models. Our experimental results demonstrated that cerebral ischemia-reperfusion leads to oxidative stress damage, including cell apoptosis and mitochondrial dysfunction. Moreover, further experiments showed that inhibition of AMPK and ERK1/2 activity, using U0126 and Compound C respectively, could alleviate oxidative stress-induced cellular injury, improve mitochondrial morphology and function, reduce reactive oxygen species levels, increase superoxide dismutase levels, and suppress apoptosis. These findings clearly indicate the critical role of the AMPK/ERK1/2 signaling pathway in regulating oxidative stress damage and cerebral ischemia-reperfusion injury. The discoveries in this study provide a theoretical basis for further research and development of neuroprotective therapeutic strategies targeting the AMPK/ERK1/2 signaling pathway.

20.
Trends Mol Med ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004548

ABSTRACT

Senescence is associated with multiple morbidities and therapeutic targeting of these cells is a key aim. In a recent study, Katsuumi et al. found that targeting sodium-glucose co-transporter 2 (SGLT2) promoted immune clearance of senescent cells via programmed cell death-1 ligand (PD-L1) suppression, thus promoting immunosurveillance. This could have profound implications for many age-related diseases, including cancer and frailty.

SELECTION OF CITATIONS
SEARCH DETAIL
...