Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 447
Filter
1.
Genet Med ; : 101283, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39355979

ABSTRACT

BACKGROUND: ARID1A/ARID1B haploinsufficiency leads to Coffin-Siris syndrome, duplications of ARID1A lead to a distinct clinical syndrome, whilst ARID1B duplications have not yet been linked to a phenotype. METHODS: We collected patients with duplications encompassing ARID1A and ARID1B duplications. RESULTS: 16 ARID1A and 13 ARID1B duplication cases were included with duplication sizes ranging from 0.1-1.2 Mb(1-44 genes) for ARID1A and 0.9-10.3 Mb(2-101 genes) for ARID1B. Both groups shared features, with ARID1A patients having more severe intellectual disability, growth delay and congenital anomalies. DNA methylation analysis showed that ARID1A patients had a specific methylation pattern in blood, which differed from controls and from patients with ARID1A or ARID1B loss-of-function variants. ARID1B patients appeared to have a distinct methylation pattern, similar to ARID1A duplication patients, but further research is needed to validate these results. Five cases with duplications including ARID1A or ARID1B initially annotated as duplications of uncertain significance were evaluated using PhenoScore and DNA methylation re-analysis, resulting in the reclassification of two ARID1A and two ARID1B duplications as pathogenic. CONCLUSION: Our findings reveal that ARID1B duplications manifest a clinical phenotype and ARID1A duplications have a distinct episignature that overlaps with that of ARID1B duplications, providing further evidence for a distinct and emerging BAFopathy caused by whole gene duplication rather than haploinsufficiency.

2.
Cell Commun Signal ; 22(1): 467, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350161

ABSTRACT

Traumatic brain injury (TBI) is an acquired insult to the brain caused by an external mechanical force, potentially resulting in temporary or permanent impairment. Microglia, the resident immune cells of the central nervous system, are activated in response to TBI, participating in tissue repair process. However, the underlying epigenetic mechanisms in microglia during TBI remain poorly understood. ARID1A (AT-Rich Interaction Domain 1 A), a pivotal subunit of the multi-protein SWI/SNF chromatin remodeling complex, has received little attention in microglia, especially in the context of brain injury. In this study, we generated a Arid1a cKO mouse line to investigate the potential roles of ARID1A in microglia in response to TBI. We found that glial scar formation was exacerbated due to increased microglial migration and a heightened inflammatory response in Arid1a cKO mice following TBI. Mechanistically, loss of ARID1A led to an up-regulation of the chemokine CCL5 in microglia upon the injury, while the CCL5-neutralizing antibody reduced migration and inflammatory response of LPS-stimulated Arid1a cKO microglia. Importantly, administration of auraptene (AUR), an inhibitor of CCL5, repressed the microglial migration and inflammatory response, as well as the glial scar formation after TBI. These findings suggest that ARID1A is critical for microglial response to injury and that AUR has a therapeutic potential for the treatment of TBI.


Subject(s)
Brain Injuries, Traumatic , Chemokine CCL5 , DNA-Binding Proteins , Mice, Knockout , Microglia , Transcription Factors , Animals , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/genetics , Microglia/metabolism , Microglia/pathology , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Movement , Cicatrix/pathology , Cicatrix/metabolism , Mice, Inbred C57BL , Male
3.
Eur J Obstet Gynecol Reprod Biol ; 302: 73-80, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39236644

ABSTRACT

Endometriosis is a disease affecting approximately 10% of reproductive age women. Loss of the tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) occurs in some endometriosis cases. Histone deacetylase 6 (HDAC-6) is an enzyme with implication in several diseases including different cancer types and immunological disorders, where it is involved in protein trafficking and degradation, cell shape, and migration. In ARID1A-deficient ovarian cancer increased HDAC-6 expression lead to apoptosis-inhibiting post-translational modification of p53. It is not known if HDAC-6 expression is also altered in ARID1A-deficient endometriosis. The aim of this study was to assess HDAC-6 expression in endometriotic lesions in correlation to ARID1A-status. Two tissue-microarrays with 168 endometriotic lesions, including ovarian (64/168, 38 %), peritoneal (66/168, 39 %) and deep-infiltrating (38/168, 23 %) subtypes, and 73 endometrium of women without endometriosis were assessed. Mean ARID1A immunoreactivity score (IRS) in endometriosis group was 10.83 (±2.36) and 10.78 (±1.94) in the epithelium and stroma, respectively, while the respective mean HDAC6 IRS were 9.16 (±2.76) and 5.94 (±2.88). The comparison of the HDAC6 expression between endometriosis subtypes showed higher expression in deep-infiltrating endometriosis, in both, epithelium (p = 0.032) and stroma (p = 0.007). In ARID1A negative cases, epithelial expression of HDAC6 was higher in endometriosis compared to women without endometriosis (p = 0.031), and this was also specifically observed in the subset of ovarian endometriosis (p = 0.037). There were no significant differences in the stromal expression of HDAC6. In conclusion, our results demonstrate a complex expression pattern of HDAC6 depending on ARID1A status in different endometriosis subtypes. Further studies on HDAC6 and ARID1A are important to elucidate mechanisms involved in malignant transformation of endometriosis.

4.
Cancers (Basel) ; 16(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39272807

ABSTRACT

ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% of cases. Despite a growing understanding of the consequences of ARID1A loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a genetic dependency of ARID1A in CCOC. Depletion or chemical perturbation of KEAP1 results in selective growth inhibition of ARID1A-KO cell lines and edited primary endometrial epithelial cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A deficiency. Together, our findings identify a potentially novel synthetic lethal interaction of ARID1A-deficient cells.

5.
Cancers (Basel) ; 16(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39272926

ABSTRACT

SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.

6.
Am J Hum Genet ; 111(10): 2232-2252, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39226899

ABSTRACT

The BAF chromatin remodeler regulates lineage commitment including cranial neural crest cell (CNCC) specification. Variants in BAF subunits cause Coffin-Siris syndrome (CSS), a congenital disorder characterized by coarse craniofacial features and intellectual disability. Approximately 50% of individuals with CSS harbor variants in one of the mutually exclusive BAF subunits, ARID1A/ARID1B. While Arid1a deletion in mouse neural crest causes severe craniofacial phenotypes, little is known about the role of ARID1A in CNCC specification. Using CSS-patient-derived ARID1A+/- induced pluripotent stem cells to model CNCC specification, we discovered that ARID1A-haploinsufficiency impairs epithelial-to-mesenchymal transition (EMT), a process necessary for CNCC delamination and migration from the neural tube. Furthermore, wild-type ARID1A-BAF regulates enhancers associated with EMT genes. ARID1A-BAF binding at these enhancers is impaired in heterozygotes while binding at promoters is unaffected. At the sequence level, these EMT enhancers contain binding motifs for ZIC2, and ZIC2 binding at these sites is ARID1A-dependent. When excluded from EMT enhancers, ZIC2 relocates to neuronal enhancers, triggering aberrant neuronal gene activation. In mice, deletion of Zic2 impairs NCC delamination, while ZIC2 overexpression in chick embryos at post-migratory neural crest stages elicits ectopic delamination from the neural tube. These findings reveal an essential ARID1A-ZIC2 axis essential for EMT and CNCC delamination.


Subject(s)
DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Face , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Neural Crest , Transcription Factors , Neural Crest/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Intellectual Disability/genetics , Micrognathism/genetics , Animals , Face/abnormalities , Face/embryology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Neck/abnormalities , Neck/embryology , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Haploinsufficiency , Enhancer Elements, Genetic/genetics , Foot Deformities, Congenital/genetics , Foot Deformities, Congenital/pathology , Gene Expression Regulation, Developmental , Abnormalities, Multiple
7.
Ther Adv Med Oncol ; 16: 17588359241271793, 2024.
Article in English | MEDLINE | ID: mdl-39281970

ABSTRACT

Biliary tract cancer incidence is increasing and the prognostic remains dismal. The development of personalized medicine is a pivotal issue in proposing therapeutic options for biliary tract cancer patients. Whole exome sequencing identifies approximately 15% of IDH1 mutations and 15% of FGFR2 fusions in intrahepatic cholangiocarcinoma. Other patients are not currently eligible for targeted therapy. Here, we present a patient treated for a metastatic cholangiocarcinoma with an unexpected response to a mammalian target of rapamycin (mTOR) targeting agent. Whole exome sequencing enabled the identification of TSC1 and ARID1A mutations. Reintroduction of mTOR inhibitors with similar results sustains the main role of these targeted agents in the control of the disease. These results suggest the existence of an mTOR oncogenic addiction in biliary tract cancer. Our results support the interest in performing exome sequencing in liver cancers and the potential to identify actionable mutations with important therapeutic issues.

8.
Cell Mol Immunol ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300319

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.

9.
Clin Transl Oncol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179940

ABSTRACT

OBJECTIVE: The prognosis of hepatocellular carcinoma (HCC) is poor and there is no stable and reliable molecular biomarker for evaluation. This study attempted to find reliable prognostic markers from tumor mutational profiles. METHODS: A total of 362 HCC samples with whole-exome sequencing were collected as discovery datasets, and 200 samples with targeted sequencing were used for validation of the relevant results. All HCC samples were obtained from previously published studies. Bayesian non-negative matrix factorization was used to extract mutational signatures, and multivariate Cox regression models were utilized to identify the prognostic role of mutational factors. Gene set enrichment analysis was employed to discover potential signaling pathways associated with specific mutational groups. RESULTS: In the HCC discovery dataset, a total of four mutational signatures (i.e., signatures 4, 6, 16, and 22) were extracted, of which signature 16 characterized by T>C mutations was observed to be associated with favorable HCC prognosis, and this correlation was also found in the validation dataset. Further analysis showed that patients with ARID1A mutations exhibited inferior survival outcomes in both discovery and validation datasets. Mechanistic exploration revealed that the presence of signature 16 was associated with better immune infiltration and tumor immunogenicity, while patients with ARID1A mutations were away from these favorable immunological features. CONCLUSION: By integrating somatic mutation data and clinical information of HCC, this study identified that signature 16 and ARID1A mutations were associated with better and worse outcomes respectively, providing a basis for prognosis prediction and clinical treatment strategies of HCC.

10.
Histopathology ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39192803

ABSTRACT

AIM: Gastrointestinal medullary carcinoma is a rare histologic subtype of adenocarcinoma. As nonampullary small bowel medullary carcinomas (SB-MCs) are poorly characterized, we aimed to analyse their clinicopathologic and immunohistochemical features and to compare them with nonmedullary small bowel adenocarcinomas (NM-SBAs). METHODS AND RESULTS: Surgically resected SBAs collected through the Small Bowel Cancer Italian Consortium were classified as SB-MCs (carcinomas with ≥50% of tumour fulfilling the typical histologic criteria of MC) or NM-SBAs. Immunohistochemistry for cytokeratin (CK)7, CK20, CDX2, programmed death-ligand 1 (PD-L1) and mismatch repair proteins was performed in both SB-MCs and NM-SBAs. SB-MCs were also tested for CK8/18, synaptophysin, SMARCB1, SMARCA2, SMARCA4, and ARID1A and for Epstein-Barr virus (EBV)-encoded RNAs by in-situ hybridization. MLH1 promoter methylation status was evaluated in MLH1-deficient cases. Eleven SB-MCs and 149 NM-SBAs were identified. One (9%) SB-MC was EBV-positive, while 10 (91%) harboured mismatch repair deficiency (dMMR). MLH1 promoter hypermethylation was found in all eight dMMR SB-MCs tested. Switch/sucrose nonfermentable deficiency was seen in two (18%) SB-MCs, both with isolated loss of ARID1A. Compared with NM-SBAs, SB-MCs exhibited an association with coeliac disease (P < 0.001), higher rates of dMMR (P < 0.001), and PD-L1 positivity by both tumour proportion score and combined positive score (P < 0.001 for both), and a lower rate of CK20 expression (P = 0.024). Survival analysis revealed a better prognosis of SB-MC patients compared to NM-SBA cases (P = 0.02). CONCLUSION: SB-MCs represent a distinct histologic subtype, with peculiar features compared to NM-SBAs, including association with coeliac disease, dMMR, PD-L1 expression, and better prognosis.

11.
Cancers (Basel) ; 16(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39123453

ABSTRACT

Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.

12.
J Gastrointest Oncol ; 15(3): 862-872, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38989399

ABSTRACT

Background: Defects in DNA damage repair can cause genetic mutations, which in turn can cause different types of cancers. Chromatin remodeling complexes, which help repair damaged DNA, can cause the chromatin structure to change as a result of DNA damage. ARID1A may play a role in the process of DNA damage repair, and arid1a may be related to the occurrence and development of gastric cancer (GC). This study aimed to investigate the mechanism of ARID1A regulating the DNA damage repair of gastric adenocarcinoma cell lines AGS and SGC-7901 and its effect on migration, proliferation and apoptosis. Methods: The expression of ARID1A plasmid was detected by Western blot and real-time polymerase chain reaction (PCR). The effect of etoposide (ETO) on the survival rate of AGS and SGC-7901 gastric adenocarcinoma cell lines was detected by MTT assay. The DNA double-strand break model was established by ETO and then passed through the comet assay and immunofluorescence co-localization to observe DNA damage; western blot method was used to detect the effect of ARID1A on the expression of related proteins in DNA damage repair pathway in gastric adenocarcinoma cells; scratch test and colony formation experiments were used to observe ARID1A migration and proliferation of gastric adenocarcinoma cells. The flow cytometry was used to detect the effect of ARID1A on apoptosis of gastric adenocarcinoma cells. Results: The expression of mRNA and protein was increased after transfection of ARID1A plasmid. ETO was confirmed by MTT assay to inhibit cell survival in a dose-dependent manner. After the DNA double-strand break model was established by ETO, the expression levels of phospho-ataxia telangiectasia mutated (p-ATM) protein increased in the overexpressed ARID1A group. Meanwhile, the overexpressed ARID1A group had a shortened tail moment, and γ-H2AX and ARID1A co-localized in the DNA damage site of the nucleus. The over-expressed ARID1A group had weaker wound healing ability, reduced number of clone formation, and increased apoptosis rate. Conclusions: ARID1A may repair DNA double-strand breaks caused by ETO by p-ATM pathway; ARID1A can inhibit the migration and proliferation of gastric adenocarcinoma cells and promote apoptosis. Our findings indicate that ARID1A could serve as a therapeutic target and biomarker for GC patients.

13.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062866

ABSTRACT

Endometriosis is a hormone-dependent, chronic inflammatory condition that affects 5-10% of reproductive-aged women. It is a complex disorder characterized by the growth of endometrial-like tissue outside the uterus, which can cause chronic pelvic pain and infertility. Despite its prevalence, the underlying molecular mechanisms of this disease remain poorly understood. Current treatment options are limited and focus mainly on suppressing lesion activity rather than eliminating it entirely. Although endometriosis is generally considered a benign condition, substantial evidence suggests that it increases the risk of developing specific subtypes of ovarian cancer. The discovery of cancer driver mutations in endometriotic lesions indicates that endometriosis may share molecular pathways with cancer. Moreover, the application of single-cell and spatial genomics, along with the development of organoid models, has started to illuminate the molecular mechanisms underlying disease etiology. This review aims to summarize the key genetic mutations and alterations that drive the development and progression of endometriosis to malignancy. We also review the significant recent advances in the understanding of the molecular basis of the disorder, as well as novel approaches and in vitro models that offer new avenues for improving our understanding of disease pathology and for developing new targeted therapies.


Subject(s)
Endometriosis , Endometriosis/pathology , Endometriosis/genetics , Endometriosis/etiology , Endometriosis/metabolism , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/etiology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Mutation , Animals
14.
Trends Immunol ; 45(8): 568-570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060141

ABSTRACT

In a recent article, Maxwell et al. report that loss of tumor cell-specific AT-rich interaction domain 1A (ARID1A), a component of the chromatin remodeling SWI/SNF complex, triggers antitumor immunity via R-loop-mediated upregulation of the type-I interferon (IFN) pathway. These recent findings uncover a molecular mechanism underlying improved responses to immune checkpoint therapy (ICT) seen in patients harboring an ARID1A loss-of-function mutation.


Subject(s)
DNA-Binding Proteins , Membrane Proteins , Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Neoplasms/immunology , Neoplasms/genetics , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Signal Transduction , Interferon Type I/metabolism , Interferon Type I/immunology , Chromatin Assembly and Disassembly
15.
Gastric Cancer ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028418

ABSTRACT

BACKGROUND: The purpose of the study was to conduct a comprehensive genomic characterization of gene alterations, microsatellite instability (MSI), and tumor mutational burden (TMB) in submucosal-penetrating (Pen) early gastric cancers (EGCs) with varying prognoses. METHODS: Samples from EGC patients undergoing surgery and with 10-year follow-up data available were collected. Tissue genomic alterations were characterized using Trusight Oncology panel (TSO500). Pathway instability (PI) scores for a selection of 218 GC-related pathways were calculated both for the present case series and EGCs from the TCGA cohort. RESULTS: Higher age and tumor location in the upper-middle tract are significantly associated with an increased hazard of relapse or death from any cause (p = 0.006 and p = 0.032). Even if not reaching a statistical significance, Pen A tumors more frequently present higher TMB values, higher frequency of MSI-subtypes and an overall increase in PI scores, along with an enrichment in immune pathways. ARID1A gene was observed to be significantly more frequently mutated in Pen A tumors (p = 0.006), as well as in patients with high TMB (p = 0.027). Tumors harboring LRP1B alterations seem to have a higher hazard of relapse or death from any cause (p = 0.089), being mutated mainly in relapsed patients (p = 0.093). CONCLUSIONS: We found that the most aggressive subtype Pen A is characterized by a higher frequency of ARID1A mutations and a higher genetic instability, while LRP1B alterations seem to be related to a lower disease-free survival. Further investigations are needed to provide a rationale for the use of these markers to stratify prognosis in EGC patients.

16.
Discov Oncol ; 15(1): 213, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847966

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs), especially those targeting programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), have introduced a new treatment landscape for many types of tumors. However, they only achieve a limited therapeutic response. Hence, identifying patients who may benefit from ICIs is currently a challenge. METHODS: 47 tumor patients harboring ARID1A mutations were retrospectively studied. The genomic profiling data through next-generation sequencing (NGS) and relevant clinical information were collected and analyzed. Additionally, bioinformatics analysis of the expression of immune checkpoints and immune cell infiltration levels was conducted in ARID1A-mutant gastric cancer (GC). RESULTS: ARID1A mutations frequently co-occur with mutations in DNA damage repair (DDR)-associated genes. Among the 35 ARID1A-mutant patients who received immunotherapy, 27 were evaluable., with the objective response rate (ORR) was 48.15% (13/27), and the disease control rate (DCR) was 92.59% (25/27). Moreover, survival assays revealed that ARID1A-mutant patients had longer median overall survival (mOS) after immunotherapy. In ARID1A-mutated GC patients, receiving ICIs treatment indicated longer progressive-free survival (PFS). Additionally, the incidence of microsatellite instability-high (MSI-H), high tumor mutation burden (TMB-H) and Epstein‒Barr virus (EBV) infection was elevated. Bioinformatic analysis showed significant enrichment of immune response and T cell activation pathway within differentially expressed genes in ARID1A-mutant GC group. Finally, ARID1A mutations status was considered to be highly correlated with the level of tumor infiltrating lymphocytes (TILs) and high expression of immune checkpoints. CONCLUSIONS: Patients with tumors harboring ARID1A mutations may achieve better clinical outcomes from immunotherapy, especially in GC. ARID1A mutations can lead to genomic instability and reshape the tumor immune microenvironment (TIME), which can be used as a biomarker for immunotherapy.

17.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835016

ABSTRACT

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Subject(s)
Adenosine Deaminase , Cyclin-Dependent Kinases , DNA-Binding Proteins , RNA Editing , RNA-Binding Proteins , Transcription Factors , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Cell Line, Tumor , CDC2 Protein Kinase
18.
J Transl Med ; 22(1): 556, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858765

ABSTRACT

BACKGROUND: The poor chemo-response and high DNA methylation of ovarian clear cell carcinoma (OCCC) have attracted extensive attentions. Recently, we revealed the mutational landscape of the human kinome and additional cancer-related genes and found deleterious mutations in ARID1A, a component of the SWI/SNF chromatin-remodeling complex, in 46% of OCCC patients. The present study aims to comprehensively investigate whether ARID1A loss and genome-wide DNA methylation are co-regulated in OCCC and identify putative therapeutic targets epigenetically regulated by ARID1A. METHODS: DNA methylation of ARID1Amt/ko and ARID1Awt OCCC tumors and cell lines were analyzed by Infinium MethylationEPIC BeadChip. The clustering of OCCC tumors in relation to clinical and mutational status of tumors were analyzed by hierarchical clustering analysis of genome-wide methylation. GEO expression profiles were used to identify differentially methylated (DM) genes and their expression level in ARID1Amt/ko vs ARID1Awt OCCCs. Combining three pre-ranked GSEAs, pathways and leading-edge genes epigenetically regulated by ARID1A were revealed. The leading-edge genes that passed the in-silico validation and showed consistent ARID1A-related methylation change in tumors and cell lines were regarded as candidate genes and finally verified by bisulfite sequencing and RT-qPCR. RESULTS: Hierarchical clustering analysis of genome-wide methylation showed two clusters of OCCC tumors. Tumor stage, ARID1A/PIK3CA mutations and TP53 mutations were significantly different between the two clusters. ARID1A mutations in OCCC did not cause global DNA methylation changes but were related to DM promoter or gene-body CpG islands of 2004 genes. Three pre-ranked GSEAs collectively revealed the significant enrichment of EZH2- and H3K27me3-related gene-sets by the ARID1A-related DM genes. 13 Leading-edge DM genes extracted from the enriched gene-sets passed the expression-based in-silico validation and showed consistent ARID1A-related methylation change in tumors and cell lines. Bisulfite sequencing and RT-qPCR analysis showed promoter hypermethylation and lower expression of IRX1, TMEM101 and TRIP6 in ARID1Amt compared to ARID1Awt OCCC cells, which was reversed by 5-aza-2'-deoxycytidine treatment. CONCLUSIONS: Our study shows that ARID1A loss is related to the differential methylation of a number of genes in OCCC. ARID1A-dependent DM genes have been identified as key genes of many cancer-related pathways that may provide new candidates for OCCC targeted treatment.


Subject(s)
Adenocarcinoma, Clear Cell , DNA Methylation , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Nuclear Proteins , Ovarian Neoplasms , Transcription Factors , Humans , DNA Methylation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cell Line, Tumor , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/pathology , Genome, Human , Mutation/genetics , Epigenesis, Genetic , Cluster Analysis
19.
Cancers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893118

ABSTRACT

BACKGROUND: AT-rich interaction domain 1A (ARID1A) has been proposed as a new biomarker for predicting response to immune checkpoint inhibitors (ICIs). The predictive value of ARID1A for predicting ICI effectiveness has not been reported for endometrial cancer. Therefore, we investigated whether ARID1A negativity predicts ICI effectiveness for endometrial cancer treatment. METHODS: We evaluated ARID1A expression, tumor-infiltrating lymphocytes (CD8+), and immune checkpoint molecules (PD-L1/PD-1) by immunostaining endometrial samples from patients with endometrial cancer. Samples in which any of the four mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) were determined to be negative via immunostaining were excluded. In the ARID1A-negative group, microsatellite instability (MSI) status was confirmed via MSI analysis. RESULTS: Of the 102 samples investigated, 25 (24.5%) were ARID1A-negative. CD8 and PD-1 expression did not differ significantly between the ARID1A-negative group and the ARID1A-positive group; however, the ARID1A-negative group showed significantly lower PD-L1 expression. Only three samples (14.2%) in the ARID1A-negative group showed high MSI. Sanger sequencing detected three cases of pathological mutation in the MSH2-binding regions. We also established an ARID1A-knockout human ovarian endometriotic epithelial cell line (HMOsisEC7 ARID1A KO), which remained microsatellite-stable after passage. CONCLUSION: ARID1A negativity is not suitable as a biomarker for ICI effectiveness in treating endometrial cancer.

20.
Cancers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893181

ABSTRACT

AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL