Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
1.
Article in English | MEDLINE | ID: mdl-39004332

ABSTRACT

INTRODUCTION: Anomalous cerebral blood flow (CBF) is evident in bipolar disorder (BD), however the extent to which CBF reflects peripheral vascular function in BD is unknown. This study investigated endothelial function, an index of early atherosclerosis and cardiovascular disease risk, in relation to CBF among youth with BD. METHODS: Participants included 113 youth, 13-20 years old (66 BD; 47 healthy controls [HC]). CBF was measured using arterial spin labeling with 3 T MRI. Region of interest analyses (ROI; global grey matter, middle frontal gyrus, anterior cingulate cortex, temporal cortex, caudate) were undertaken alongside voxel-wise analyses. Reactive hyperemia index (RHI), a measure of endothelial function, was assessed non-invasively via pulse amplitude tonometry. General linear models were used to examine RHI and RHI-by-diagnosis associations with CBF, controlling for age, sex, and body mass index. Bonferroni correction for multiple comparisons was used for ROI analyses, such that the significance level was divided by the number of ROIs (α = 0.05/5 = 0.01). Cluster-extent thresholding was used to correct for multiple comparisons for voxel-wise analyses. RESULTS: ROI findings were not significant after correction. Voxel-wise analyses found that higher RHI was associated with lower left thalamus CBF in the whole group (p < 0.001). Additionally, significant RHI-by-diagnosis associations with CBF were found in three clusters: left intracalcarine cortex (p < 0.001), left thalamus (p < 0.001), and right frontal pole (p = 0.006). Post-hoc analyses showed that in each cluster, higher RHI was associated with lower CBF in BD, but higher CBF in HC. CONCLUSION: We found that RHI was differentially associated with CBF in youth with BD versus HC. The unanticipated association of higher RHI with lower CBF in BD could potentially reflect a compensatory mechanism. Future research, including prospective studies and experimental designs are warranted to build on the current findings.

2.
Magn Reson Med ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011598

ABSTRACT

PURPOSE: To mitigate the B0/B1 + sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control. METHODS: We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs. We compare performance between this train and the standard composite refocusing train, including with and without DPC, for dual-module VSI VSASL. We evaluate (1) simulated velocity-selective profiles and subtraction fidelity across a broad B0/B1 + range, (2) subtraction fidelity in phantoms, and (3) image quality, artifact presence, and gray-matter perfusion heterogeneity (as measured by the spatial coefficient of variation) in healthy human subjects. RESULTS: Adiabatic refocusing significantly improves FT-VSI robustness to B0/B1 + inhomogeneity for a single label-control subtraction. Subtraction fidelity is dramatically improved in both simulation and phantoms compared with composite refocusing without DPC, and is similar compared with DPC methods. In humans, marked artifacts seen with the non-DPC composite refocusing approach are eliminated, corroborated by significantly reduced gray-matter heterogeneity (via lower spatial coefficient of variation values). CONCLUSION: A novel VSASL labeling train using adiabatic refocusing pulses for VSI was found to reduce artifacts related to B0/B1 + inhomogeneity, thereby providing an alternative to DPC and its associated limitations, which include increased vulnerability to physiological noise and motion, reduced functional MRI applicability, and suboptimal data censoring.

3.
Front Vet Sci ; 11: 1406343, 2024.
Article in English | MEDLINE | ID: mdl-38966564

ABSTRACT

Introduction: Dynamic contrast-enhanced (DCE) MRI and arterial spin labeling (ASL) MRI enable non-invasive measurement of renal blood flow (RBF), whereas blood oxygenation level-dependent (BOLD) MRI enables non-invasive measurement of the apparent relaxation rate (R2*), an indicator of oxygenation. This study was conducted to evaluate the potential role of these MRI modalities in assessing RBF and oxygenation in dogs. The correlation between contrast-enhanced ultrasound (CEUS) and the MRI modalities was examined and also the ability of the MRI modalities to detect pharmacologically induced changes. Methods: RBF, using CEUS, ASL- and DCE-MRI, as well as renal oxygenation, using BOLD-MRI of eight adult beagles were assessed at two time-points, 2­3 weeks apart. During each time point, the anesthetized dogs received either a control (0.9% sodium chloride) or a dopamine treatment. For each time point, measurements were carried out over 2 days. An MRI scan at 3 T was performed on day one, followed by CEUS on day two. Results: Using the model-free model with caudal placement of the arterial input function (AIF) region of interest (ROI) in the aorta, the DCE results showed a significant correlation with ASL measured RBF and detected significant changes in blood flow during dopamine infusion. Additionally, R2* negatively correlated with ASL measured RBF at the cortex and medulla, as well as with medullary wash-in rate (WiR) and peak intensity (PI). ASL measured RBF, in its turn, showed a positive correlation with cortical WiR, PI, area under the curve (AUC) and fall time (FT), and with medullary WiR and PI, but a negative correlation with medullary rise time (RT). During dopamine infusion, BOLD-MRI observed a significant decrease in R2* at the medulla and entire kidney, while ASL-MRI demonstrated a significant increase in RBF at the cortex, medulla and the entire kidney. Conclusion: ASL- and BOLD-MRI can measure pharmacologically induced changes in renal blood flow and renal oxygenation in dogs and might allow detection of changes that cannot be observed with CEUS. However, further research is needed to confirm the potential of ASL- and BOLD-MRI in dogs and to clarify which analysis method is most suitable for DCE-MRI in dogs.

4.
Heliyon ; 10(11): e32699, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961946

ABSTRACT

Rationale and objectives: The management of tumor recurrence (TR) and radiation-induced brain injury (RIBI) poses significant challenges, necessitating the development of effective differentiation strategies. In this study, we investigated the potential of amide proton transfer-weighted (APTw) and arterial spin labeling (ASL) imaging for discriminating between TR and RIBI in patients with high-grade glioma (HGG). Methods: A total of 64 HGG patients receiving standard treatment were enrolled in this study. The patients were categorized based on secondary pathology or MRI follow-up results, and the demographic characteristics of each group were presented. The APTw, rAPTw, cerebral blood flow (CBF) and rCBF values were quantified. The differences in various parameters between TR and RIBI were assessed using the independent-samples t-test. The discriminative performance of these MRI parameters in distinguishing between the two conditions was assessed using receiver operating characteristic (ROC) curve analysis. Additionally, the Delong test was employed to further evaluate their discriminatory ability. Results: The APTw and CBF values of TR were significantly higher compared to RIBI (P < 0.05). APTw MRI demonstrated superior diagnostic efficiency in distinguishing TR from RIBI (area under the curve [AUC]: 0.864; sensitivity: 75.0 %; specificity: 81.8 %) when compared to ASL imaging. The combined utilization of APTw and CBF value further enhanced the AUC to 0.922. The Delong test demonstrated that the combination of APTw and ASL exhibited superior performance in the identification of TR and RIBI, compared to ASL alone (P = 0.048). Conclusion: APTw exhibited superior diagnostic efficacy compared to ASL in the evaluation of TR and RIBI. Furthermore, the combination of APTw and ASL exhibits greater discriminatory capability and diagnostic performance.

5.
Neuroradiology ; 66(8): 1391-1395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869516

ABSTRACT

Moyamoya disease is characterized by progressive internal carotid artery (ICA) occlusion. Extracranial-intracranial bypass surgery is effective, particularly in pediatric patients; imaging plays a crucial role in evaluating intracranial perfusion pre- and post-surgery. Arterial spin labeling (ASL) is a magnetic resonance technique employed for noninvasive, whole-brain perfusion assessment by magnetically labeling inflowing blood. However, ASL cannot evaluate the territories and development of each vessel perfusion compared with digital subtraction angiography (DSA). Recently, super-selective ASL (SS-ASL) has been developed, performing pinpoint labeling on a specific artery at a time, and offering a tomographic view that distinctly displays blood supply areas for each vessel. Unlike DSA, SS-ASL is noninvasive and can be repeatedly performed in pediatric patients. In conclusion, SS-ASL is useful for evaluating bypass development over time and understanding the pathophysiology of pediatric moyamoya disease.


Subject(s)
Magnetic Resonance Angiography , Moyamoya Disease , Spin Labels , Humans , Moyamoya Disease/diagnostic imaging , Moyamoya Disease/surgery , Child , Magnetic Resonance Angiography/methods , Male , Female , Cerebral Angiography/methods , Cerebral Revascularization/methods , Child, Preschool , Angiography, Digital Subtraction/methods
6.
Article in English | MEDLINE | ID: mdl-38912380

ABSTRACT

Arterial spin labeling (ASL) perfusion MRI is the only non-invasive imaging technique for quantifying regional cerebral blood flow (CBF), which is a fundamental physiological variable. ASL MRI has a relatively low signal-to-noise-ratio (SNR). In this study, we proposed a novel ASL denoising method by simultaneously exploiting the inter- and intra-receive channel data correlations. MRI including ASL MRI data have been routinely acquired with multi-channel coils but current denoising methods are designed for denoising the coil-combined data. Indeed, the concurrently acquired multi-channel images differ only by coil sensitivity weighting and random noise, resulting in a strong low-rank structure of the stacked multi-channel data matrix. In our method, this matrix was formed by stacking the vectorized slices from different channels. Matrix rank was then approximately measured through the logarithm-determinant of the covariance matrix. Notably, our filtering technique is applied directly to complex data, avoiding the need to separate magnitude and phase or divide real and imaginary data, thereby ensuring minimal information loss. The degree of low-rank regularization is controlled based on the estimated noise level, striking a balance between noise removal and texture preservation. A noteworthy advantage of our framework is its freedom from parameter tuning, distinguishing it from most existing methods. Experimental results on real-world imaging data demonstrate the effectiveness of our proposed approach in significantly improving ASL perfusion quality. By effectively mitigating noise while preserving important textural information, our method showcases its potential for enhancing the utility and accuracy of ASL perfusion MRI, paving the way for improved neuroimaging studies and clinical diagnoses.

7.
Animals (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929429

ABSTRACT

Arterial spin labeling (ASL) MRI allows non-invasive quantification of renal blood flow (RBF) and shows great potential for renal assessment. To our knowledge, renal ASL-MRI has not previously been performed in dogs. The aim of this pilot study was to determine parameters essential for ALS-MRI-based quantification of RBF in dogs: T1, blood (longitudinal relaxation time), λ (blood tissue partition coefficient) and TI (inversion time). A Beagle was scanned at 3T with a multi-TI ASL sequence, with TIs ranging from 250 to 2500 ms, to determine the optimal TI value. The T1 of blood for dogs was determined by scanning a blood sample with a 2D IR TSE sequence. The water content of the dog's kidney was determined by analyzing kidney samples from four dogs with a moisture analyzer and was subsequently used to calculate λ. The optimal TI and the measured values for T1,blood, and λ were 2000 ms, 1463 ms and 0.91 mL/g, respectively. These optimized parameters for dogs resulted in lower RBF values than those obtained from inline generated RBF maps. In conclusion, this study determined preliminary parameters essential for ALS-MRI-based RBF quantification in dogs. Further research is needed to confirm these values, but it may help guide future research.

8.
Cureus ; 16(5): e60803, 2024 May.
Article in English | MEDLINE | ID: mdl-38910733

ABSTRACT

Objective and background This study aimed to develop a deep convolutional neural network (DCNN) model capable of generating synthetic 4D magnetic resonance angiography (MRA) from 3D time-of-flight (TOF) images, allowing estimation of temporal changes in arterial flow. TOF MRA provides static information about arterial structures through maximum intensity projection (MIP) processing, but it does not capture the dynamic information of contrast agent circulation, which is lost during MIP processing. Considering the principles of TOF, it is hypothesized that dynamic information about arterial blood flow is latent within TOF signals. Although arterial spin labeling (ASL) can extract dynamic arterial information, ASL MRA has drawbacks, such as longer imaging times and lower spatial resolution than TOF MRA. This study's primary aim is to extend the utility of TOF MRA by training a machine-learning model on paired TOF and ASL data to extract latent dynamic information from TOF signals. Methods A DCNN combining a modified U-Net and a long-short-term memory (LSTM) network was trained on a dataset of 13 subjects (11 men and two women, aged 42-77 years) using paired 3D TOF MRA and 4D ASL MRA images. Subjects had no history of cerebral vessel occlusion or significant stenosis. The dataset was acquired using a 3T MRI system with a 32-channel head coil. Preprocessing involved resampling and intensity normalization of TOF and ASL images, followed by data augmentation and arterial mask generation. The model learned to extract flow information from TOF images and generate 8-phase 4D MRA images. The precision of flow estimation was evaluated using the coefficient of determination (R²) and Bland-Altman analysis. A board-certified neuroradiologist validated the quality of the images and the absence of significant stenosis in the major cerebral arteries. Results The generated 4D MRA images closely resembled the ground-truth ASL MRA data, with R² values of 0.92, 0.85, and 0.84 for the internal carotid artery (ICA), proximal middle cerebral artery (MCA), and distal MCA, respectively. Bland-Altman analysis revealed a systematic error of -0.06, with 95% agreement limits ranging from -0.18 to 0.12. Additionally, the model successfully identified flow abnormalities in a subject with left MCA stenosis, displaying a delayed peak and subsequent flattening distal to the stenosis, indicative of reduced blood flow. Visualization of the predicted arterial flow overlaid on the original TOF MRA images highlighted the spatial progression and dynamics of the flow. Conclusions The DCNN model effectively generated synthetic 4D MRA images from TOF images, demonstrating its potential to estimate temporal changes in arterial flow accurately. This non-invasive technique offers a promising alternative to conventional methods for visualizing and evaluating healthy and pathological flow dynamics. It has significant potential to improve the diagnosis and treatment of cerebrovascular diseases by providing detailed temporal flow information without the need for contrast agents or invasive procedures. The practical implementation of this model could enable the extraction of dynamic cerebral blood flow information from routine brain MRI examinations, contributing to the early diagnosis and management of cerebrovascular disorders.

9.
J Neuroradiol ; 51(5): 101211, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908545

ABSTRACT

BACKGROUND AND PURPOSE: To determine the effect of mild chronic traumatic brain injury (cTBI) on cerebral blood flow and metabolism. METHODS: 62 cTBI and 40 healthy controls (HCs) with no prior history of cTBI underwent both pulsed arterial spin labeling functional magnetic resonance imaging (PASL-fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) scanning via a Siemens mMR (simultaneous PET/MRI) scanner. 30 participants also took part in a series of neuropsychological clinical measures (NCMs). Images were processed using statistical parametric mapping software relevant to each modality to generate relative cerebral blood flow (rCBF) and glucose metabolic standardized uptake value ratio (gSUVR) grey matter maps. A voxel-wise two-sample T-test and two-tailed gaussian random field correction for multiple comparisons was performed. RESULTS: cTBI patients showed a significant increase in rCBF and gSUVR in the right thalamus as well as a decrease in bilateral occipital lobes and calcarine sulci. An inverse relationship between rCBF and gSUVR was found in the left frontal lobe, the left precuneus and regions in the right temporal lobe. Within those regions rCBF values correlated with 9 distinct NCMs and gSUVR with 3. CONCLUSION: Simultaneous PASL-fMRI and FDG-PET can identify functional changes in a mild cTBI population. Within this population FDG-PET identified more regions of functional disturbance than ASL fMRI and NCMs are shown to correlate with rCBF and glucose metabolism (gSUVR) in various brain regions. As a result, both imaging modalities contribute to understanding the underlying pathophysiology and clinical course of mild chronic traumatic brain injury.

10.
Front Neurosci ; 18: 1356241, 2024.
Article in English | MEDLINE | ID: mdl-38694903

ABSTRACT

Introduction: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in motor skills, communication, emotional expression, and social interaction. Accurate diagnosis of ASD remains challenging due to the reliance on subjective behavioral observations and assessment scales, lacking objective diagnostic indicators. Methods: In this study, we introduced a novel approach for diagnosing ASD, leveraging T1-based gray matter and ASL-based cerebral blood flow network metrics. Thirty preschool-aged patients with ASD and twenty-two typically developing (TD) individuals were enrolled. Brain network features, including gray matter and cerebral blood flow metrics, were extracted from both T1-weighted magnetic resonance imaging (MRI) and ASL images. Feature selection was performed using statistical t-tests and Minimum Redundancy Maximum Relevance (mRMR). A machine learning model based on random vector functional link network was constructed for diagnosis. Results: The proposed approach demonstrated a classification accuracy of 84.91% in distinguishing ASD from TD. Key discriminating network features were identified in the inferior frontal gyrus and superior occipital gyrus, regions critical for social and executive functions in ASD patients. Discussion: Our study presents an objective and effective approach to the clinical diagnosis of ASD, overcoming the limitations of subjective behavioral observations. The identified brain network features provide insights into the neurobiological mechanisms underlying ASD, potentially leading to more targeted interventions.

11.
NMR Biomed ; : e5177, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751142

ABSTRACT

This study aimed to implement a physics-informed unsupervised deep neural network (DNN) to estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multi-delay arterial spin labeling (ASL), and compare its performance with that of a supervised DNN and the conventional method. Supervised and unsupervised DNNs were trained using simulation data. The accuracy and noise immunity of the three methods were compared using simulations and in vivo data. The simulation study investigated the differences between the predicted and ground-truth values and their variations with the noise level. The in vivo study evaluated the predicted values from the original images and noise-induced variations in the predicted values from the synthesized noisy images by adding Rician noise to the original images. The simulation study showed that CBF estimated using the supervised DNN was not biased by noise, whereas that estimated using other methods had a positive bias. Although the ATT with all methods exhibited a similar behavior with noise increase, the ATT with the supervised DNN was less biased. The in vivo study showed that CBF and ATT with the supervised DNN were the most accurate and that the supervised and unsupervised DNNs had the highest noise immunity in CBF and ATT estimations, respectively. Physics-informed unsupervised learning can estimate CBF and ATT from multi-delay ASL signals, and its performance is superior to that of the conventional method. Although noise immunity in ATT estimation was superior with unsupervised learning, other performances were superior with supervised learning.

12.
J Thromb Thrombolysis ; 57(5): 797-804, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662115

ABSTRACT

OBJECTIVE: This purpose of this study is to investigate the effectiveness and safety of utilizing the arterial spin-labeling (ASL) combined with diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) combined with DWI double mismatch in the endovascular treatment of patients diagnosed with wake-up stroke (WUS). METHODS: In this single-center trial, patients diagnosed with WUS underwent thrombectomy if acute ischemic lesions were observed on DWI indicating large precerebral circulation occlusion. Patients with no significant parenchymal hypersignal on FLAIR and ASL imaging showing a hypoperfusion tissue to infarct core volume ratio of at least 1.2 were included. The participants were divided into groups receiving endovascular thrombectomy plus medical therapy or medical therapy alone, based on their subjective preference. Functional outcomes were assessed using the ordinal score on the modified Rankin scale (mRs) at 90 days, along with the rate of functional independence. RESULTS: In this study, a total of 77 patients were included, comprising 38 patients in the endovascular therapy group and 39 patients in the medical therapy group. The endovascular therapy group exhibited more favorable changes in the distribution of functional prognosis measured by mRs at 90 days, compared to the medical therapy group (adjusted common odds ratio, 3.25; 95% CI, 1.03 to 10.26; P < 0.01). Additionally, the endovascular therapy group had a higher proportion of patients achieving functional independence (odds ratio, 4.0; 95% CI, 1.36 to 11.81; P < 0.01). Importantly, there were no significant differences observed in the incidence of intracranial hemorrhage or mortality rates between the two groups. CONCLUSION: Guided by the ASL-DWI and FLAIR-DWI double mismatch, endovascular thrombectomy combined with standard medical treatment appears to yield superior functional outcomes in patients with WUS and large vessel occlusion compared to standard medical treatment alone.


Subject(s)
Diffusion Magnetic Resonance Imaging , Endovascular Procedures , Spin Labels , Thrombectomy , Humans , Thrombectomy/methods , Diffusion Magnetic Resonance Imaging/methods , Male , Female , Endovascular Procedures/methods , Aged , Middle Aged , Treatment Outcome , Aged, 80 and over , Stroke/diagnostic imaging , Stroke/therapy , Stroke/surgery , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology
13.
Placenta ; 150: 72-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38615536

ABSTRACT

INTRODUCTION: Proper placental development is crucial to fetal health but is challenging to functionally assess non-invasively and is thus poorly characterized in populations. Body mass index (BMI) has been linked with adverse outcomes, but the causative mechanism is uncertain. Velocity-selective arterial spin labeling (VS-ASL) MRI provides a method to non-invasively measure placental perfusion with robustness to confounding transit time delays. In this study, we report on the measurement of perfusion in the human placenta in early pregnancy using velocity-selective arterial spin labeling (VS-ASL) MRI, comparing non-obese and obese participants. METHODS: Participants (N = 97) undergoing routine prenatal care were recruited and imaged with structural and VS-ASL perfusion MRI at 15 and 21 weeks gestation. Resulting perfusion images were analyzed with respect to obesity based on BMI, gestational age, and the presence of adverse outcomes. RESULTS: At 15 weeks gestation BMI was not associated with placental perfusion or perfusion heterogeneity. However, at 21 weeks gestation BMI was associated with higher placental perfusion (p < 0.01) and a decrease in perfusion heterogeneity (p < 0.05). In alignment with past studies, perfusion values were also higher at 21 weeks compared to 15 weeks gestation. In a small cohort of participants with adverse outcomes, at 21 weeks lower perfusion was observed compared to participants with uncomplicated pregnancies. DISCUSSION: These results suggest low placental perfusion in the early second trimester may not be the culpable factor driving associations of obesity with adverse outcomes.


Subject(s)
Body Mass Index , Obesity , Placenta , Pregnancy Trimester, Second , Spin Labels , Humans , Female , Pregnancy , Placenta/diagnostic imaging , Placenta/blood supply , Adult , Obesity/diagnostic imaging , Magnetic Resonance Imaging/methods , Placental Circulation/physiology , Young Adult
14.
Front Radiol ; 4: 1345465, 2024.
Article in English | MEDLINE | ID: mdl-38562528

ABSTRACT

Purpose: Conventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas. Methods: Twenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area. Results: All treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597). Conclusions: ASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.

15.
Biomedicines ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672109

ABSTRACT

Arterial spin labeling (ASL) has emerged as a promising noninvasive tool for the evaluation of both pediatric and adult arteriovenous malformations (AVMs). This paper reviews the advantages and challenges associated with the use of ASL in AVM assessment. An assessment of the diagnostic workup of AVMs and their variants in both adult and pediatric populations is proposed. Evaluation after treatments, whether endovascular or microsurgical, was similarly examined. ASL, with its endogenous tracer and favorable safety profile, offers functional assessment and arterial feeder identification. ASL has demonstrated strong performance in identifying feeder arteries and detecting arteriovenous shunting, although some studies report inferior performance compared with digital subtraction angiography (DSA) in delineating venous drainage. Challenges include uncertainties in sensitivity for specific AVM features. Detecting AVMs in challenging locations, such as the apical cranial convexity, is further complicated, demanding careful consideration due to the risk of underestimating total blood flow. Navigating these challenges, ASL provides a noninvasive avenue with undeniable merits, but a balanced approach considering its limitations is crucial. Larger-scale prospective studies are needed to comprehensively evaluate the diagnostic performance of ASL in AVM assessment.

16.
Front Endocrinol (Lausanne) ; 15: 1287930, 2024.
Article in English | MEDLINE | ID: mdl-38577572

ABSTRACT

Objective: To evaluate the role of foot muscle amide proton transfer weighted (APTw) contrast and tissue rest perfusion in quantifying diabetic foot (DF) infection and its correlation with blood parameters. Materials and methods: With approval from an ethical review board, this study included 40 diabetes mellitus (DM) patients with DF and 31 DM patients without DF or other lower extremity arterial disease. All subjects underwent MRI, which included foot sagittal APTw and coronal arterial spin labeling (ASL) imaging. The normalized MTRasym (3.5 ppm) and the ratio of blood flow (rBF) in rest status of the affected side lesions to the non-affected contralateral side were determined. The inter-group differences of these variables were evaluated. Furthermore, the association between normalized MTRasym (3.5 ppm), rBF, and blood parameters [fasting blood glucose (FBG), glycosylated hemoglobin content, C-reactive protein, neutrophil percentage, and white blood cell count] was explored. Using an ROC curve, the diagnostic capacity of normalized MTRasym (3.5 ppm), BF, and blood biochemical markers in differentiating with or without DF in DM was assessed. Results: In the DF group, MTRasym (3.5 ppm) and BF in lesion and normalized MTRasym (3.5 ppm) were higher than those in the control group (p < 0.05). In addition, correlations were identified between normalized MTRasym (3.5 ppm) and blood parameters, such as C-reactive protein, glycosylated hemoglobin content, FBG, neutrophil ratio, and white blood cell (p < 0.001). Meanwhile, association between BF in lesion and blood parameters, such as C-reactive protein, neutrophil percentage, and FBG (p < 0.01). AUC of normalized MTRasym (3.5 ppm) in identifying with/without DF in patients with DM is 0.986 (95% CI, 0.918-1.00) with the sensitivity of 97.22% and the specificity of 100%. Conclusion: Normalized MTRasym (3.5 ppm) and the BF in lesion may be treated as a safer and more convenient new indicator to evaluate the tissue infection without using a contrast agent, which may be useful in monitoring and preoperatively assessing DF patients with renal insufficiency.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Protons , Diabetic Foot/diagnostic imaging , Amides/chemistry , C-Reactive Protein , Case-Control Studies , Glycated Hemoglobin , Magnetic Resonance Imaging/methods
17.
Neurol Med Chir (Tokyo) ; 64(5): 197-204, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38432944

ABSTRACT

Arterial spin-labeling magnetic resonance imaging (ASL-MRI) is widely used for evaluating collateral development in patients with acute ischemic stroke (AIS). This study aimed to characterize the findings of multiphase ASL-MRI between embolic and atherosclerotic large vessel occlusion (LVO) to aid in the differential diagnosis. Among 982 patients with AIS, 44 who were diagnosed with acute, symptomatic, and unilateral occlusion of the horizontal segment of the middle cerebral artery (MCA) were selected and categorized into embolic stroke (ES) and atherosclerosis (AT) groups. Using ASL-MRI (postlabeling delay [PLD] of 1.5, 2.0, and 2.5 s) at admission, the ipsilateral to contralateral ratio (ICR) of the signal intensity and its time-course increasing rate (from PLD 1.5 to 2.0 and 2.5, ΔICR) were measured and compared between the two groups. The mean ICR was significantly higher in the AT group than in the ES group (AT vs. ES: 0.49 vs. 0.27 for ICR1.5, 0.73 vs. 0.32 for ICR2.0, and 0.92 vs. 0.37 for ICR2.5). The ΔICR of PLD 1.5-2.0 (ΔICR2.0) and 2.5 (ΔICR2.5) were also significantly higher in the AT group than in the ES group (AT vs. ES: 50.9% vs. 26.3% for ΔICR2.0, and 92.6% vs. 42.9% for ΔICR2.5). Receiver operating characteristic curves showed moderate-to-strong discriminative abilities of each ASL-MRI parameter in predicting MCA occlusion etiology. In conclusion, multiphase ASL-MRI parameters may aid in differentiating intracranial LVO etiology during the acute phase. Thus, it is applicable to AIS management.


Subject(s)
Infarction, Middle Cerebral Artery , Spin Labels , Humans , Male , Female , Infarction, Middle Cerebral Artery/diagnostic imaging , Aged , Middle Aged , Magnetic Resonance Imaging/methods , Diagnosis, Differential , Intracranial Arteriosclerosis/diagnostic imaging , Aged, 80 and over , Embolic Stroke/etiology , Embolic Stroke/diagnostic imaging , Retrospective Studies
18.
Quant Imaging Med Surg ; 14(3): 2415-2425, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38545043

ABSTRACT

Background: The long-term survival of kidney transplants is often influenced by various factors, among which renal allograft rejection is the most notable factor. A noninvasive and reliable imaging biomarker correlating with kidney function and histopathology would facilitate longitudinal long-term follow-up of renal allografts. The aim of the study is to investigate the value of arterial spin labeling (ASL) combined with T1 mapping for assessing kidney function in patients with long-term renal transplant survival, and to establish radiological and histopathologic correlations between the magnetic resonance imaging (MRI) measurements and kidney allograft biopsy findings. Methods: Kidney transplant recipients who were admitted to the Department of Urology in First Affiliated Hospital of Soochow University between January and December 2022 were prospectively consecutively recruited [group A, estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2; group B, 30≤ eGFR <60 mL/min/1.73 m2; group C, eGFR <30 mL/min/1.73 m2], and part of them underwent biopsies. All patients underwent ASL and T1 mapping. MRI parameters were calculated and analyzed. Results: A total of 63 patients (Group A, 30 cases; Group B, 20 cases; and Group C, 13 cases) were included in this cross-sectional study. Cortical T1 increased, whereas renal blood flow (RBF) and ΔT1 [100% × (cortical T1 - medullary T1)/cortical T1] decreased with the decrease of eGFR. The RBF, cortical T1, and ΔT1 values were moderately correlated with eGFR (r=0.569, -0.573, and 0.672, respectively). The MRI parameters were moderately correlated with Banff scores, which determined renal allograft rejection and chronicity. The area under the curve (AUC) for the discrimination of groups A versus B and groups A versus C were 0.740 [95% confidence interval (CI): 0.597-0.854, P=0.004] and 0.923 (95% CI: 0.800-0.982, P<0.001), respectively, using ASL; 0.873 (95% CI: 0.749-0.950, P<0.001) and 0.926 (95% CI: 0.803-0.983, P<0.001), respectively, using T1 mapping; and 0.892 (95% CI: 0.771-0.962, P<0.001) and 0.956 (95% CI: 0.846-0.995, P<0.001), respectively, using multi-parameter MRI. The AUC for discrimination between groups B and C was 0.729 (95% CI: 0.546-0.868, P=0.02) using ASL. Conclusions: The RBF, cortical T1, and ΔT1 can serve as new imaging biomarkers of kidney function and histopathological microstructure.

19.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502108

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Subject(s)
Brain , Cerebrovascular Circulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Male , Female , Adult , Algorithms
20.
Oncol Lett ; 27(4): 180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38464343

ABSTRACT

The present study aimed to investigate the value of intravoxel incoherent motion imaging (IVIM) and three-dimensional pulsed continuous arterial spin labeling (ASL) in assessing dynamic changes of the parotid gland in patients with nasopharyngeal carcinoma (NPC) following radiotherapy (RT). A total of 18 patients with NPC who underwent intensity-modulated RT were enrolled in the present study. All patients underwent conventional magnetic resonance imaging, plus IVIM and ASL imaging of the bilateral parotid glands within 2 weeks prior to RT, and 1 week (1W) and 3 months (3M) following RT. Pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (F) and blood flow (BF) were analyzed. D and BF values were significantly increased from pre-RT to 1W post-RT [change rate: Median (IQR), ΔD1W%: 39.28% (38.23%) and ΔBF1W%: 60.84% (54.88%)] and continued to increase from 1W post-RT to 3M post-RT [55.44% (40.56%) and ΔBF%: 120.39% (128.74%)]. In addition, the F value was significantly increased from pre-RT to 1W post-RT, [change rate: Median (IQR), ΔF1W%: 28.13% (44.66%)], and this decreased significantly from 1W post-RT to 3M post-RT. However, no significant differences were observed between pre-RT and 3M post-RT. Results of the present study also demonstrated that the D* value was significantly decreased from pre-RT to 1W post-RT and 3M post-RT [change rate: Median (IQR), ΔD*1w%: -41.86% (51.71%) and ΔD*3M: -29.11% (42.67%)]. No significant difference was observed between the different time intervals post-RT. There was a significant positive correlation between percentage change in ΔBF1W and radiation dose (ρ=0.548, P=0.001). Thus, IVIM-diffusion-weighted imaging and ASL may aid in the detection and prediction of radiation-induced parotid damage in the early stages following RT. They may contribute to further understanding the potential association between damage to the parotid glands and patient-/treatment-related variables, through the assessment of individual microcapillary perfusion and tissue diffusivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...