Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
New Phytol ; 239(3): 1051-1067, 2023 08.
Article in English | MEDLINE | ID: mdl-37291904

ABSTRACT

In the absence of light signals, Arabidopsis plants fail to develop the rosette habit typical for this species. Instead, plants display caulescent growth due to elongation of rosette internodes. This aspect of photomorphogenic development has been paid little attention and molecular events involved, downstream of photoreceptor signaling, remain to be identified. Using a combination of genetic and molecular approaches, we show that Arabidopsis rosette habit is a photomorphogenic trait controlled by induction of ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) as downstream target of multiple photoreceptors. ATH1 induction prevents rosette internode elongation by maintaining the shoot apical meristem (SAM) rib zone area inactive and requires inactivation of photomorphogenesis inhibitors, including PHYTOCHROME INTERACTING FACTOR (PIF) proteins. ATH1 activity results in tissue-specific inhibition of PIF expression, establishing double-negative feedback-regulation at the SAM. Light-requirement for ATH1 expression can be overcome by high sugar availability to the SAM. Both sugar and light signals that induce ATH1 and, subsequently, rosette habit are mediated by TOR kinase. Collectively, our data reveal a SAM-specific, double-negative ATH1-PIF feedback loop at the basis of rosette habit. Upstream, TOR kinase functions as central hub integrating light and energy signals that control this for Arabidopsis quintessential trait.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Homeobox , Phytochrome/metabolism , Sugars/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
Mem. Inst. Oswaldo Cruz ; 115: e200401, 2020. graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: biblio-1135257

ABSTRACT

BACKGROUND Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene. OBJECTIVE This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata. METHODS Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection. FINDINGS The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice. MAIN CONCLUSIONS The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.


Subject(s)
Animals , Mice , Trehalase/metabolism , Virulence/genetics , Candida glabrata/genetics , Trehalase/physiology , Trehalase/genetics , Trehalose/analysis , Virulence/physiology , Candidiasis , Gene Deletion , Candida glabrata/physiology , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Genes, Fungal , Hydrolases
3.
Genes (Basel) ; 9(8)2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30082666

ABSTRACT

Ovate Family Protein1 (OFP1) is a regulator, and it is suspected to be involved in plant growth and development. Meanwhile, Arabidopsis Thaliana Homeobox (ATH1), a BEL1-like homeodomain (HD) transcription factor, is known to be involved in regulating stem growth, flowering time and flower basal boundary development in Arabidopsis. Previous large-scale yeast two-hybrid studies suggest that ATH1 possibly interact with OFP1, but this interaction is yet unverified. In our study, the interaction of OFP1 with ATH1 was verified using a directional yeast two-hybrid system and bimolecular fluorescence complementation (BiFC). Our results also demonstrated that the OFP1-ATH1 interaction is mainly controlled by the HD domain of ATH1. Meanwhile, we found that ATH1 plays the role of transcriptional repressor to regulate plant development and that OFP1 can enhance ATH1 repression function. Regardless of the mechanism, a putative functional role of ATH1-OFP1 may be to regulate the expression of the both the GA20ox1 gene, which is involved in gibberellin (GA) biosynthesis and control of stem elongation, and the Flowering Locus C (FLC) gene, which inhibits transition to flowering. Ultimately, the regulatory functional mechanism of OFP1-ATH1 may be complicated and diverse according to our results, and this work lays groundwork for further understanding of a unique and important protein⁻protein interaction that influences flowering time, stem development, and flower basal boundary development in plants.

4.
Gene ; 553(1): 17-23, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25261846

ABSTRACT

Seeds contain storage compounds, from various carbohydrates to proteins and lipids, which are synthesized during seed development. For the purposes of many plant researches or commercial applications, developing promoter systems expressing specifically in seeds or in particular constituents or tissues/compartments of seeds are indispensable. To screen genes dominantly or specifically expressed in seed tissues, we analyzed Arabidopsis ATH1 microarray data open to the public. Thirty-two candidate genes were selected and their expressions in seed tissues were confirmed by RT-PCR. Finally, seven genes were selected for promoter analysis. The promoters of seven genes were cloned into pBI101 vector and transformed into Arabidopsis to assay histochemical ß-glucuronidase (GUS) activity. We found that Pro-at3g03230 promoter drove GUS expression in a chalazal endosperm, Pro-at4g27530:GUS expressed in both chalazal endosperm and embryo, Pro-at4g31830 accelerated GUS expression both in radicle and procambium, Pro-at5g10120 and Pro-at5g16460 drove GUS expression uniquely in embryo, Pro-at5g53100:GUS expressed only in endosperm, and Pro-at5g54000 promoted GUS expression in both embryo and inner integument. These promoters can be used for expressing any genes in specific seed tissues for practical application.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Seeds/genetics , Arabidopsis/embryology , Base Sequence , DNA Primers , Databases, Genetic , Glucuronidase/genetics , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...