Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.532
Filter
1.
Curr Opin Plant Biol ; 81: 102589, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955094

ABSTRACT

Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.

2.
Food Chem ; 459: 140439, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003853

ABSTRACT

Elevated CO2 was a potential strategy for strawberry preservation. However, the regulatory mechanism remained unclear. In current study, transcriptome analysis showed that elevated CO2 played important roles in regulating strawberry fruit quality at the transcriptional level, and plant hormones metabolism at least partially involved in the regulatory process. Further, ABA was demonstrated to play important roles in the response to elevated CO2. Elevated CO2 inhibited the accumulation of ABA, which was 61% lower than that in control. Elevated CO2 repressed ABA synthesis by inhibiting NCED activity and the expression of FaNCED1/2, leading to the reduction of ABA accumulation as a result. Meanwhile, elevated CO2 also decreased ABA sensitivity by down-regulating FaSnRK2.4/2.6 and FaABI5 expression. The dual down-regulation of ABA signaling accounted for the regulation of fruit quality under elevated CO2 treatment. These results provide new insights into the mechanism of strawberry fruit response to elevated CO2.

3.
Molecules ; 29(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38999081

ABSTRACT

Abscisic acid (ABA) is one of the many naturally occurring phytohormones widely found in plants. This study focused on refining APAn, a series of previously developed agonism/antagonism switching probes. Twelve novel APAn analogues were synthesized by introducing varied branched or oxygen-containing chains at the C-6' position, and these were screened. Through germination assays conducted on A. thaliana, colza, and rice seeds, as well as investigations into stomatal movement, several highly active ABA receptor antagonists were identified. Microscale thermophoresis (MST) assays, molecular docking, and molecular dynamics simulation showed that they had stronger receptor affinity than ABA, while PP2C phosphatase assays indicated that the C-6'-tail chain extending from the 3' channel effectively prevented the ligand-receptor binary complex from binding to PP2C phosphatase, demonstrating strong antagonistic activity. These antagonists showed effective potential in promoting seed germination and stomatal opening of plants exposed to abiotic stress, particularly cold and salt stress, offering advantages for cultivating crops under adverse conditions. Moreover, their combined application with fluridone and gibberellic acid could provide more practical agricultural solutions, presenting new insights and tools for overcoming agricultural challenges.


Subject(s)
Abscisic Acid , Germination , Molecular Docking Simulation , Abscisic Acid/chemistry , Germination/drug effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Seeds/drug effects , Seeds/chemistry , Seeds/growth & development , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Molecular Dynamics Simulation , Agriculture/methods , Gibberellins/chemistry , Gibberellins/metabolism , Pyridones
4.
Front Plant Sci ; 15: 1417632, 2024.
Article in English | MEDLINE | ID: mdl-38966139

ABSTRACT

Introduction: Abscisic acid (ABA) can negatively regulate seed germination, but the mechanisms of ABA-mediated metabolism modulation are not well understood. Moreover, it remains unclear whether metabolic pathways vary with the different tissue parts of the embryo, such as the radicle, hypocotyl and cotyledon. Methods: In this report, we performed the first comprehensive metabolome analysis of the radicle and hypocotyl + cotyledon in Pinus koraiensis seeds in response to ABA treatment during germination. Results and discussion: Metabolome profiling showed that following ABA treatment, 67 significantly differentially accumulated metabolites in the embryo were closely associated with pyrimidine metabolism, phenylalanine metabolism, cysteine and methionine metabolism, galactose metabolism, terpenoid backbone biosynthesis, and glutathione metabolism. Meanwhile, 62 metabolites in the hypocotyl + cotyledon were primarily involved in glycerophospholipid metabolism and glycolysis/gluconeogenesis. We can conclude that ABA may inhibit Korean pine seed germination primarily by disrupting the biosynthesis of certain plant hormones mediated by cysteine and methionine metabolism and terpenoid backbone biosynthesis, as well as reducing the reactive oxygen species scavenging ability regulated by glutathione metabolism and shikimate pathway in radicle. ABA may strongly disrupt the structure and function of cellular membranes due to alterations in glycerophospholipid metabolism, and weaken glycolysis/gluconeogenesis in the hypocotyl + cotyledon, both of which are major contributors to ABA-mediated inhibition of seed germination. These results highlight that the spatial modulation of metabolic pathways in Pinus koraiensis seeds underlies the germination response to ABA.

5.
J Plant Physiol ; 301: 154301, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968782

ABSTRACT

Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.

6.
Front Plant Sci ; 15: 1359315, 2024.
Article in English | MEDLINE | ID: mdl-38988632

ABSTRACT

The gene encoding 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) functions in abscisic acid (ABA) biosynthesis, plant growth and development, and tolerance to adverse temperatures, drought and saline conditions. In this study, three rice lines were used to explore the function of OsNCED3, these included an OsNCED3-overexpressing line (OsNCED3-OE), a knockdown line (osnced3-RNAi) and wild-type rice (WT). These rice lines were infested with the brown plant hopper (BPH; Nilaparvata lugens) and examined for physiological and biochemical changes, hormone content, and defense gene expression. The results showed that OsNCED3 activated rice defense mechanisms, which led to an increased defense enzyme activity of superoxide dismutase, peroxidase, and polyphenol oxidase. The overexpression of OsNCED3 decreased the number of planthoppers and reduced oviposition and BPH hatching rates. Furthermore, the overexpression of OsNCED3 increased the concentrations of jasmonic acid, jasmonyl-isoleucine and ABA relative to WT rice and the osnced3-RNAi line. These results indicate that OsNCED3 improved the stress tolerance in rice and support a role for both jasmonates and ABA as defense compounds in the rice-BPH interaction.

7.
J Exp Bot ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989653

ABSTRACT

In plant biology Fusicoccin (FC) is one of the most studied fungal metabolites to date. Since the structural identification in 1964, much has been learned about its effects on the physiology of plants, about the interference with the action of plant hormones, the molecular nature of the plant receptor(s) for FC and the biosynthetic pathway for FC in the fungus. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase|14-3-3 receptor has taken center stage in explaining all FC induced physiological effects. However, a more critical review shows that this is not at all evident for a number of FC induced effects. Examples of this are: the inhibition of outward rectifying K+-channels in guard cells, the phosphorylation/activation of PEP-carboxylase and malate accumulation, the antagonism with ABA induced production of H2O2 / NO and the effect on ethylene production. In addition, recently two other physiological processes were shown to be targeted by FC, viz. the activation of TORC1 and the interference of FC with the immune response to fungal elicitors. In this review, the notion will be challenged that all FC affected processes start with the binding to and activation of the PM-ATPase and the question is raised whether may be other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule; in analogy to the fungal product and plant hormone gibberellic acid. A relevant question in this respect is whether it is a coincidence that proteins that act in a coordinated fashion during stomatal opening (the ATPases and K+-channels) are targeted by FC? Or are the sites where FC binds in the plant, conserved during evolution because they serve a physiological role, namely the accommodation of a plant produced molecule? In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile to make a renewed attempt with current day improved technology to answer this question and may be upgrade FC or structural analogue(s) to a new level, the level of plant hormone.

8.
Plant J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981025

ABSTRACT

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.

9.
Front Nutr ; 11: 1417526, 2024.
Article in English | MEDLINE | ID: mdl-39036490

ABSTRACT

Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.

10.
Plant J ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949092

ABSTRACT

The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.

11.
Plants (Basel) ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999702

ABSTRACT

Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.

12.
Plants (Basel) ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999712

ABSTRACT

Phosphite (Phi) has gained attention in agriculture due to its biostimulant effect on crops. This molecule has been found to benefit plant performance by providing protection against pathogens, improving yield and fruit quality as well as nutrient and water use efficiency. It is still unclear how Phi enhances plant growth and protects against multiple stresses. It has been hypothesized that Phi acts by directly affecting the pathogens and interacting with the plant cellular components and molecular machinery to elicit defense responses. This study elucidates the mechanisms underlying Phi's beneficial effects on plants, revealing their complex interplay with fundamental signaling pathways. An RNA-seq study of Arabidopsis seedlings under optimal and limiting phosphate conditions helped us unveil Phi's role in promoting plant growth by activating the expression of the genes involved in the biosynthesis and signaling pathways associated with abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA). The expression of ABA-related genes, known for their involvement in stress response and development regulation, is triggered by Phi treatment, contributing to enhanced resilience and growth. Simultaneously, the activation of the SA pathway, associated with defense responses, suggests Phi's potential in bolstering plant immunity. Moreover, Phi influences JA biosynthesis and signaling, which are crucial for defense against herbivores and pathogens, thereby strengthening plants' defenses. Our findings reveal a multifaceted mechanism through which Phi benefits Arabidopsis development. Understanding its intricate interplay with key signaling pathways opens avenues for leveraging Phi as a strategic tool to enhance plant resilience, immunity, and growth in agricultural and ecological contexts.

13.
Eur J Pharmacol ; 977: 176672, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38849041

ABSTRACT

OBJECTIVE: Abscisic acid (ABA) is a phytohormone that inhibits airway inflammation in acute respiratory distress syndrome (ARDS) mouse models. However, the molecular mechanism underlying this phenomenon remains unclear. METHODS: Serum ABA level in patients and mice was measured via liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-depth molecular mechanism was investigated through transmission electron microscopy, RNA-sequencing, and molecular docking in ARDS mice and cultured primary alveolar macrophages (AMs). RESULTS: We found that the serum ABA level was remarkably decreased in ARDS mice and patients. ABA inhibited lipopolysaccharide (LPS)-induced airway inflammation in mice; moreover, it downregulated genes associated with pyroptosis, as shown by RNA-sequencing and lung protein immunoblots. ABA inhibited the formation of membrane pores in AMs and suppressed the cleavage of gasdermin D (GSDMD) and the activation of caspase-11 and caspase-1 in vivo and in vitro; however, the overexpression of caspase-11 reversed the protective effect of ABA on LPS-induced pyroptosis of primary AMs. ABA inhibited intra-AM LPS accumulation while increasing the level of acyloxyacyl hydrolase (AOAH) in AMs, whereas AOAH deficiency abrogated the suppressive action of ABA on inflammation, pyroptosis, and intra-AM LPS accumulation in vivo and in vitro. Importantly, ABA promoted its intracellular receptor lanthionine C-like receptor 2 interacting with transcription factor peroxisome proliferator-activated receptor γ, which ultimately leading to increase AOAH expression to inactivate LPS and inhibit pyroptosis in AMs. CONCLUSIONS: ABA protected against LPS-induced lung injury by inhibiting pyroptosis in AMs via proliferator-activated receptor γ-mediated AOAH expression.


Subject(s)
Abscisic Acid , Macrophages, Alveolar , Pyroptosis , Respiratory Distress Syndrome , Pyroptosis/drug effects , Animals , Abscisic Acid/pharmacology , Mice , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/chemically induced , Male , Humans , Lipopolysaccharides/pharmacology , PPAR gamma/metabolism , Up-Regulation/drug effects , Mice, Inbred C57BL , Female , Disease Models, Animal
14.
Plant Physiol Biochem ; 213: 108803, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885564

ABSTRACT

Soybean research has gained immense attention due to its extensive use in food, feedstock, and various industrial applications, such as the production of lubricants and engine oils. In oil crops, the process of seed development and storage substances accumulation is intricate and regulated by multiple transcription factors (TFs). In this study, FUSCA3 (GmFUS3) was characterized for its roles in plant development, lipid metabolism, and stress regulation. Expressing GmFUS3 in atfus3 plants restored normal characteristics observed in wild-type plants, including cotyledon morphology, seed shape, leaf structure, and flower development. Additionally, its expression led to a significant increase of 25% triacylglycerols (TAG) and 33% in protein levels. Transcriptomic analysis further supported the involvement of GmFUS3 in various phases of plant development, lipid biosynthesis, lipid trafficking, and flavonoid biosynthesis. To assess the impact of stress on GmFUS3 expression, soybean plants were subjected to different stress conditions, and the its expression was assessed. Transcriptomic data revealed significant alterations in the expression levels of approximately 80 genes linked to reactive oxygen species (ROS) signaling and 40 genes associated with both abiotic and biotic stresses. Additionally, GmFUS3 was found to regulate abscisic acid synthesis and interact with nucleoside diphosphate kinase 1, which is responsible for plant cellular processes, development, and stress response. Overall, this research sheds light on the multifaceted functions of GmFUS3 and its potential applications in enhancing crop productivity and stress tolerance.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Stress, Physiological , Glycine max/metabolism , Glycine max/genetics , Glycine max/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified/metabolism , Lipid Metabolism/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Metabolic Networks and Pathways
15.
Plant Physiol Biochem ; 213: 108855, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917736

ABSTRACT

Drought is a major handicap for plant growth and development. WRKY proteins comprise one of the largest families of plant transcription factors, playing important roles in plant growth and stress tolerance. In tomato (Solanum lycopersicum L.), different WRKY transcription factors differentially (positively or negatively) regulate drought tolerance, however, the role of SlWRKY6 in drought response and the associated molecular mechanisms of stress tolerance remain unclear. Here we report that SlWRKY6, a member of the WRKYII-b group, is involved in the functional aspects of drought resistance in tomato. Transcriptional activation assays show that SlWRKY6 is transcriptionally active in yeast cells, while the subcellular localization assay indicates that SlWRKY6 is localized in the nucleus. Overexpression of SlWRKY6 in tomato plants resulted in stronger antioxidant capacity and drought resistance as manifested by increased photosynthetic capacity and decreased reactive oxygen species accumulation, malondialdehyde content and relative electrolyte leakage in transgenic tomato plants compared with wild-type under drought stress. Moreover, increased abscisic acid (ABA) content and transcript abundance of ABA synthesis and signaling genes (NCED1, NCED4, PYL4, AREB1 and SnRK2.6) in the transgenic tomato plants indicated potential involvement of the ABA pathway in SlWRKY6-induced drought resistance in tomato plants. Inspection of 2-kb sequences upstream of the predicted binding sites in the promoter of SlNCED1/4 identified two copies of the core W-box (TTGACC/T) sequence in the promoter of SlNCED1/4, which correlates well with the expression of these genes in response to drought, further suggesting the involvement of ABA-dependent pathway in SlWRKY6-induced drought resistance. The study unveils a critical role of SlWRKY6, which can be useful to further reveal the drought tolerance mechanism and breeding of drought-resistant tomato varieties for sustainable vegetable production in the era of climate change.


Subject(s)
Abscisic Acid , Antioxidants , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Plant Stomata , Plants, Genetically Modified , Signal Transduction , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Abscisic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Antioxidants/metabolism , Plant Stomata/physiology , Plant Stomata/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Drought Resistance
16.
Free Radic Biol Med ; 222: 371-385, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901500

ABSTRACT

Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.

17.
Front Plant Sci ; 15: 1397817, 2024.
Article in English | MEDLINE | ID: mdl-38863532

ABSTRACT

This study investigates the impact of anthocyanin treatment on rice plants under drought stress, focusing on phenotypic, molecular, and biochemical responses. Anthocyanin were treated to one month old plants one week before the droughtexposure. Drought stress was imposed by using 10% polyethylene glycol (PEG 6000). Anthocyanin-treated plants exhibited significant enhancements in various traits, including growth parameters and reproductive characteristics, under normal conditions. When subjected to drought stress, these plants displayed resilience, maintaining or improving essential morphological and physiological features compared to non-treated counterparts. Notably, anthocyanin application mitigated drought-induced oxidative stress, as evidenced by reduced levels of reactive oxygen species (ROS) and lipid membrane peroxidation. The study also elucidates the regulatory role of anthocyanins in the expression of flavonoid biosynthetic genes, leading to increased levels of key secondary metabolites. Furthermore, anthocyanin treatment influenced the levels of stress-related signaling molecules, including melatonin, proline, abscisic acid (ABA), and salicylic acid (SA), contributing to enhanced stress tolerance. The enzymatic activity of antioxidants and the expression of drought-responsive genes were modulated by anthocyanins, emphasizing their role in antioxidant defense and stress response. Additionally, anthocyanin treatment positively influenced macronutrient concentrations, particularly calcium ion (Ca+), potassium ion (K+), and sodium ion (Na+), essential for cell wall and membrane stability. The findings collectively highlight the multifaceted protective effects of anthocyanins, positioning them as potential key players in conferring resilience to drought stress in rice plants. The study provides valuable insights into the molecular and physiological mechanisms underlying anthocyanin-mediated enhancement of drought stress tolerance, suggesting promising applications in agricultural practices for sustainable crop production.

18.
Methods Mol Biol ; 2832: 205-212, 2024.
Article in English | MEDLINE | ID: mdl-38869797

ABSTRACT

One of the major plant stress level indicators is reactive oxygen species (ROS). They have been known to play a central role in regulating plant responses to various environmental stresses. This book chapter specifically covers abiotic stress induced by a drought hormone abscisic acid and biotic stress induced by Pseudomonas syringe DC3000 on single cell-type guard cells. We describe in detail the measurement of ROS production starting from sample preparation to data analysis by fluorescence intensity acquisition using ImageJ software. We discussed the problems faced while performing the experiment and addressed how to overcome them by providing specific guidelines to ensure high quality repeatable data.


Subject(s)
Arabidopsis , Reactive Oxygen Species , Stress, Physiological , Reactive Oxygen Species/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Abscisic Acid/metabolism , Pseudomonas syringae
19.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831289

ABSTRACT

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Subject(s)
Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
20.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928284

ABSTRACT

Water deficit affects the growth as well as physiological and biochemical processes in plants. The aim of this study was to determine differences in physiological and biochemical responses to drought stress in two wheat cultivars-Chinese Spring (CS) and SQ1 (which are parents of a mapping population of doubled haploid lines)-and to relate these responses to final yield and agronomic traits. Drought stress was induced by withholding water for 14 days, after which plants were re-watered and maintained until harvest. Instantaneous gas exchange parameters were evaluated on the 3rd, 5th, 10th, and 14th days of seedling growth under drought. After 14 days, water content and levels of chlorophyll a+b, carotenoids, malondialdehyde, soluble carbohydrates, phenolics, salicylic acid, abscisic acid (ABA), and polyamines were measured. At final maturity, yield components (grain number and weight), biomass, straw weight, and harvest index were evaluated. Physiological and biochemical parameters of CS responded more than those of SQ1 to the 14-day drought, reflected in a greater reduction in final biomass and yield in CS. Marked biochemical differences between responses of CS and SQ1 to the drought were found for soluble carbohydrates and polyamines. These would be good candidates for testing in the mapping population for the coincidence of the genetic control of these traits and final biomass and yield.


Subject(s)
Droughts , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Triticum/physiology , Stress, Physiological , Chlorophyll/metabolism , Water/metabolism , Chromosome Mapping , Biomass , Abscisic Acid/metabolism , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...