Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Oral Implantol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867372

ABSTRACT

INTRODUCTION: Broken screw removal from the implant connection is a common but challenging process. Several proposed methods and technical solutions may result in unsuccessful removal; thus, a novel, more conservative, risk-free method is proposed as a first attempt. DESCRIPTION OF THE CASE: The proposal is to use a silicon restoration holder to be twisted counterclockwise on the dried surface of the broken fragment inside the implant connection. This method, within the limitations of a minimal case series, yielded 100% results; however, despite previous attempts with less con- servative techniques, this approach showed no efficacy. CONCLUSION: This article aims to promote the use of silicon restoration holders as a minimally invasive first attempt at broken screw retrieval treatment before considering other options.

2.
J Funct Biomater ; 15(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786633

ABSTRACT

Preclinical and clinical research on two-piece zirconia implants are warranted. Therefore, we evaluated the in vitro fracture resistance of such a zirconia oral implant system. The present study comprised 32 two-piece zirconia implants and abutments attached to the implants using a titanium (n = 16) or a zirconia abutment screw (n = 16). Both groups were subdivided (n = 8): group T-0 comprised implants with a titanium abutment screw and no artificial loading; group T-HL was the titanium screw group exposed to hydro-thermomechanical loading in a chewing simulator; group Z-0 was the zirconia abutment screw group with no artificial loading; and group Z-HL comprised the zirconia screw group with hydro-thermomechanical loading. Groups T-HL and Z-HL were loaded with 98 N and aged in 85 °C hot water for 107 chewing cycles. All samples were loaded to fracture. Kruskal-Wallis tests were executed to assess the loading/bending moment group differences. The significance level was established at a probability of 0.05. During the artificial loading, there was a single occurrence of an implant fracture. The mean fracture resistances measured in a universal testing machine were 749 N for group T-0, 828 N for group Z-0, 652 N for group T-HL, and 826 N for group Z-HL. The corresponding bending moments were as follows: group T-0, 411 Ncm; group Z-0, 452 Ncm; group T-HL, 356 Ncm; and group Z-HL, 456 Ncm. There were no statistically significant differences found between the experimental groups. Therefore, the conclusion was that loading and aging did not diminish the fracture resistance of the evaluated implant system.

3.
J Funct Biomater ; 15(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667553

ABSTRACT

Re-tightening the loosened dental implant abutment screw is an accepted procedure, however the evidence that such screw will hold sufficiently is weak. The purpose of this study was material analysis of lost dental implant abutment screws made of the TiAlV alloy from various manufacturers, which became lost due to unscrewing or damaged when checking if unscrewed; undamaged screws could be safely re-tightened. Among 13 failed screws retrieved from 10 cases, 10 screws were removed due to untightening and 3 were broken but without mechanical damage at the threads. Advanced corrosion was found on nine screws after 2 years of working time on all surfaces, also not mechanically loaded. Sediments observed especially in the thread area did not affect the corrosion process because of no pit densification around sediments. Pitting corrosion visible in all long-used screws raises the question of whether the screws should be replaced after a certain period during service, even if they are well-tightened. This requires further research on the influence of the degree of corrosion on the loss of the load-bearing ability of the screw.

4.
J Dent Sci ; 19(2): 1126-1134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618121

ABSTRACT

Background/purpose: Few studies have investigated the effects of abutment screw diameter in the stress of dental implants and alveolar bones under occlusal forces. In this study, we investigated how variations in implant diameter, abutment screw diameter, and bone condition affect stresses in the abutment screw, implant, and surrounding bone. Materials and methods: Three-dimensional finite element (FE) models were fabricated for dental implants with external hex-type abutments measuring 4 and 5 mm in diameter. The models also included abutment screws measuring 2.0 and 2.5 mm in diameter. Each implant model was integrated with the mandibular bone comprising the cortical bone and four types of cancellous bone. In total, 12 finite element models were generated, subjected to three different occlusal forces, and analyzed using FE software to investigate the stress distribution of dental implant and alveolar bone. Results: Wider implants demonstrated lower stresses in implant and bone compared with standard-diameter implants. The quality of cancellous bone has a minimal impact on the stress values of the implant, abutment screw, and cortical bone. Regardless of occlusal arrangement or quality of cancellous bone, a consistent pattern emerged: larger abutment screw diameters led to increased stress levels on the screws, while the stress levels in both cortical and cancellous bone showed comparatively minor fluctuations. Conclusion: Wider implants tend to have better stress distribution than standard-diameter implants. The potential advantage of augmenting the abutment screw diameter is unfavorable. It may result in elevated stresses in the implant system.

5.
Clin Implant Dent Relat Res ; 26(2): 289-298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37675656

ABSTRACT

INTRODUCTION: This in vitro study aims to biomechanically evaluate the influence of medium contamination for example, saliva, blood, chlorhexidine (liquid and gel), and fluoride mouthwash on the biomechanical behavior of implant abutments' screws under static and dynamic loading. METHODS: Forty five Ti6Al4V commercial dental implants and abutments were tested in this study. Two main mechanical tests were carried out in the selected media. The first, static, aimed to evaluate the torque loss after the first tightening. The second, dynamic, involved a random cyclic load range between 0 and 200 N to evaluate torque loss due to mastication. In addition, metallographic longitudinal and cross-sections of the abutment-implant apparatus were examined to evaluate the abutment screw-abutment-implant interface. RESULTS: The static torque test showed that irrespective of the media, no statistical difference in static torque loss was found prior to dynamic loading. For the dynamic tests, torque-angle evolution analysis during tightening to 30 Ncm and after the spectrum loading, showed the same global mechanical behavior for all media, but the statistical analysis indicated a difference between the groups in reverse torque values (RTV) and in the torque loss due to dynamic loading. The medium groups CHX, CHX-gel, and Fluoride mouthwash, showed a meaningful torque loss due to loading, but the medium groups, control (no medium), blood and saliva showed an opposite trend and required a higher torque to open the abutment screws. The microstructural analysis revealed clear signs of cold-welding/galling, post-dynamic loading in these latter groups. CONCLUSIONS: The presence of lubrication/contamination media (CHX mouthwash/CHX-gel/Fluoride mouthwash) reduces the preload generated due to tightening but prevents damage due to galling. The observed reduction of RTV clearly emphasizes the need for frequent abutment screw retightening for implant-supported prosthetic long-term stability.


Subject(s)
Dental Implants , Resilience, Psychological , Fluorides , Mouthwashes , Dental Abutments , Dental Stress Analysis , Torque , Dental Implant-Abutment Design
6.
J Indian Prosthodont Soc ; 23(3): 285-293, 2023.
Article in English | MEDLINE | ID: mdl-37929368

ABSTRACT

Aim: The aim of this study was to evaluate and compare the effect of plasma nitride-treated abutment screws of two different implant systems on screw loosening and surface topography with and without thermocycling. Settings and Design: This was an in-vitro experimental study. Materials and Methods: Fifty-two abutment screws (Group A: 26 Genesis and Group B: 26 Bredent) underwent plasma nitride treatment and were subdivided into two groups, one without thermocycling and one with thermocycling. Dynamic load was applied and detorque values were evaluated for determining the screw loosening using "independent t-test" with the help of IBM SPSS Statistics 20 and scanning electron microscopy was done to check for surface topography. Statistical Analysis Used: Inter- and intragroup comparisons were done using independent t-test (SPSS: Statistical Package for the Social Sciences software version 20). Results: Plasma nitriding treatment genesis implant system abutment screw showed more screw loosening (P < 0.05) and surface roughness as compared to bredent with and without thermocycling. Conclusion: From the present study, it was shown that plasma nitride-treated abutment screws decreased the occurrence of screw loosening favoring the bredent implant-abutment system more than the genesis implant-abutment system.


Subject(s)
Dental Implants , Dental Stress Analysis , Dental Abutments , Torque , Bone Screws
7.
J Indian Prosthodont Soc ; 23(4): 398-400, 2023.
Article in English | MEDLINE | ID: mdl-37861618

ABSTRACT

Fractures of the abutment screw are an extremely dreadful and taxing experience even for experienced clinicians. Retrieval of fractured screw segments due to excessive torque and improperly placed implants pose a great challenge to the clinician. The authors present a case wherein the fractured abutment screw was retrieved successfully with the help of an intraoral plastic mixing tip of light body putty material. The intraoral plastic mixing tips are a more readily available, cost-effective, and feasible alternative to other means of screw retrieval like ultrasonic scalers, endodontic files, and screw retrieval kits.


Subject(s)
Bone Screws , Dental Abutments , Bone Screws/adverse effects , Torque , Dental Prosthesis, Implant-Supported , Ultrasonics
9.
Bioinformation ; 19(2): 221-225, 2023.
Article in English | MEDLINE | ID: mdl-37814682

ABSTRACT

The most frequent instrument used to begin tightening screws is a manually regulated screwdriver. Regarding manually regulated screwdrivers, predicted margins of error vary between fifteen percent to forty eight percent. Mechanical Torque restricting devices can consistently produce the requisite torques. As a result, devices like wrenches are needed to achieve the desirable values of torque. Hence, the present study was designed to evaluate the torque difference between handheld drivers and torque wrench and thereby its effect on the internal threads of implant surface.120 blocks was prepared from an autopolymerizing type of acrylic material each with a dimension of 1 inch. The centre of each block was affixed with analogue of dental impalnts with dimensions of 3.5 mm width and 13 mm length. With 60 specimens each, these models were split into two categories: hand torque specimens category and torque wrench specimens category. A stereomicroscope was used to look at the implant analog's internal threading architecture at a magnification of 100. At the bottom and top, four threads were spaced apart by a certain amount. Biowizard software was used for the assessment, and the results were recorded. Threads on the internal surface of dental implants were produced once more following torquing the implant's impression, and the stereomicroscope was used to quantify the separation between the 4 threads. Statistics were used to correlate the readings. All study participants' hand torque as well as torque wrench measurements were documented and statistical analysis was performed on them. When there was statistical analysis of the measurements then it was observed that mean values of torque in specimens included category of manual torque application was found out to be 33.6 ± 6.510 Ncm. On the other hand the mean values of torque in specimens included in category of torque application by torque wrench were found out to be 33.57 ± 3.472 Ncm. The outcome showed operator heterogeneity for both categories and operator variance when using a manual driver to generate torque. One independent - sample t test was used to contrast the mean data between the two categories, and P< 0.05 was chosen to determine whether the intergroup difference was meaningful. Because the torque values obtained with hand tightening were uneven, it may be concluded that different levels of hand torquing skill caused the torque to fluctuate. The torque wrench device displayed the desired torque data in the range that the manufacturer had advised. However, utilising manual drivers and a mechanical torque instrument did not cause any modifications to thread on the internal surface, and it rarely underwent significant deformation during the preliminary tightening torque readings. Thus, given that manually hand regulated drivers create a range of torques, it may be inferred that the employment of mechanical torque restricting instruments should be required.

10.
J Oral Implantol ; 49(4): 393-400, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37527179

ABSTRACT

This in vitro study evaluated the mechanical behavior of different conical connection implant systems after abutment screw withdrawal. Four conical connection systems were selected based on different conical half-angles: Ankylos (5.7°), Cowell (7.0°), Straumann (7.5°), and Astra (11.0°). In each system, 5 implants and abutments were used (n = 5). According to the recommended value, each abutment screw was torqued to settle the abutment and then withdrawn through a predesigned hole of the cemented crown. The retentiveness of the abutment was evaluated by the following mechanical testing. All specimens were subjected to cyclic loading of 20-200 N, 30°, and 4-mm off-axis to the implant axis, for 106 cycles. The pullout forces and axial displacements of the abutments were measured. The data of the Cowell system was obtained from our previous work. All groups other than Astra group, in which abutment loosened after abutment screw withdrawal, passed the cyclic loading test. Straumann group demonstrated a significantly lower pullout force (27.4 ± 21.1 N) than Ankylos (160.1 ± 41.4 N) and Cowell (183.7 ± 30.5 N) groups. All groups showed abutment rebound after screw withdrawal except Straumann group. In addition, Ankylos, Cowell, and Straumann groups demonstrated axial displacement after cyclic loading. In terms of the retentiveness of the abutment after abutment screw withdrawal examined in this study, Ankylos and Cowell groups had much higher retentiveness than Straumann group, while Astra group had none. Conical angle could be a key design parameter to make abutment screw withdrawal after conical abutment settlement feasible, but more studies must be conducted for clinical application.


Subject(s)
Dental Implant-Abutment Design , Dental Implants , Dental Stress Analysis , Torque , Bone Screws , Dental Abutments , Materials Testing
11.
Biomimetics (Basel) ; 8(2)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37092409

ABSTRACT

Background and Objective: Loosening of abutment screws in dental implants is a mechanical complication that affects prosthetic treatments and hence, patient satisfaction. Blood contamination of abutment screws may play a role in this phenomenon. However, only limited research attention has been given to this issue. In the present study, we determined the effect of blood contamination and decontamination protocol on the reverse torque value (RTV) of abutment screws. Materials and Methods: A questionnaire-based survey was sent to 210 implantologists requesting feedback on their attitude to the blood contamination issue and the decontamination protocols used. The survey responses were used in a selection of the decontamination solutions that were used in the subsequent in vitro study on the effects of blood decontamination protocol on the RTV of abutment screws. Thus, three study groups were used (n = 20 abutment screws in each group): Group 1 (control group; blood-contaminated screws); Group 2 (screws decontaminated with 5.25% sodium hypochlorite (NaOCl) solution); and Group 3 (screws decontaminated with normal saline solution (0.9%)). Then, each of the connections were subjected to thermocycling, and RTVs of the screw were measured using a digital torque meter. Intragroup and intergroup RTVs were analyzed for significance using analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) tests. Results: 48% of the implantologists responded to the survey; 80% of them were concerned with blood contamination in the implant connection, especially before abutment loading and 85% of them used either chlorhexidine solution or normal saline solution as the decontamination agent. The mean RTV for Group 2 screws (30.27 ± 2.8 N.cm) was significantly greater than that for Group 3 screws (26.02 ± 1.99 N.cm) which, in turn, was significantly greater than that for Group 1 screws (23.64 ± 1.84 N.cm). Conclusion: Decontamination of blood-covered connections using 5.25% NaOCl solution or normal saline solution restores the RTV of abutment screws. This finding may have clinical relevance in that the decontaminated screws may contribute to the low incidence of screw loosening and, ultimately, improved patient satisfaction.

12.
Int J Implant Dent ; 9(1): 8, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947262

ABSTRACT

PURPOSE: An experimental approach was designed to measure the preload force, the coefficient of friction and the component of the tightening torque that is needed to surmount the thread-friction in an implant-abutment-screw complex that includes a carbon-coated screw. With the determined preload values the coefficient of friction was calculated. METHODS: 25 unused complexes, containing an implant, an abutment and a carbon-coated titanium alloy abutment screw, were tested. A custom load frame with two load cells and associated electronics was used. The threads were not lubricated. All abutment screws were torqued ten times to 25 Ncm. The produced preload values and a force that was proportional to the thread-friction component of the tightening torque were recorded. RESULTS: Mean preload values decreased significantly with the number of repetitions (p < 0.0001) from initially 329.9 N ± 33.3 (range 255.7 to 383.9) to 253.7 N ± 36.8 (range 200.1 to 332.5) for the last tightening procedure. The corresponding change in the calculated coefficient of friction was 0.33 ± 0.04 (range 0.28 to 0.43) to 0.44 ± 0.07 (range 0.32 to 0.56). For the thread-friction no corresponding trend for consecutive tightening repetitions could be noticed. CONCLUSIONS: In the investigated implant-abutment units, repeated use of a coated abutment screw appears to increase the friction of the screw head and thereby decrease the preload. These results indicate that a pre-used coated implant-abutment-screw will fail reaching optimal screw preload.


Subject(s)
Bone Screws , Immediate Dental Implant Loading , Dental Implant-Abutment Design , Friction , Titanium , Torque , Dental Alloys
13.
J Contemp Dent Pract ; 24(12): 951-956, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38317392

ABSTRACT

AIM: To compare the removal torque loss (RTL) percentage of screw-retained, cement-retained, and combined screw- and cement-retained implant-supported crowns after cyclic loading and measure the impact of cyclic loading on removal torque. MATERIALS AND METHODS: Thirty-two dental implants (4.0 × 10 mm) in resin blocks and abutments were divided into four groups (n = 8) based on restoration design: combined screw- and cement-retained group (SC), two cement-retained groups: cemented with adhesive resin cement (AR) (Panavia V5) or provisional cement (PR) (RelyX Temp NE), and screw-retained one-piece titanium group (TI). Removal torques were measured in Newton-centimeter (Ncm) before and after 500,000-cycle cyclic loading with forces ranging from 20 to 200 N at 15 Hz. The RTL percentage in each group was calculated. The paired t-test was used to detect the difference between pre-loading (RT1) and post-loading removal torque (RT2) in each group and 1-way ANOVA was used to detect the difference of RTL percentage between groups. RESULTS: The post-loading removal torques in all groups were significantly lower than their pre-loading removal torques (p < 0.001). The 1-way ANOVA test found no significant difference in the RTL% between the study groups. The PR group exhibited the lower RTL% (30.74 ± 7.3%), followed by the TI (30.78 ± 5.6%), AR (32.12 ± 2.5%), and SC (35.71 ± 5.1%) groups. CONCLUSION: Combined screw- and cement-retained restorations exhibited similar RTL compared with other restoration designs, and cyclic loading significantly affected the removal torque. CLINICAL SIGNIFICANCE: Combined screw- and cement-retained restorations can be utilized in single-tooth situations, offering a comparable impact on screw joint stability while providing benefit of retrievability. Cyclic loading significantly influences joint stability, periodic checkup for screw loosening is recommended. How to cite this article: Jongsiri S, Arksornnukit M, Homsiang W, et al. Effect of Restoration Design on the Removal Torque Loss of Implant-supported Crowns after Cyclic Loading. J Contemp Dent Pract 2023;24(12):951-956.


Subject(s)
Crowns , Dental Implants , Torque , Dental Cements , Dental Abutments , Dental Stress Analysis , Dental Implant-Abutment Design , Dental Prosthesis, Implant-Supported , Dental Restoration Failure
14.
BMC Oral Health ; 22(1): 603, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517777

ABSTRACT

The aim of this work was to analyze and compare the removal capability, conical internal hex implant-abutment connection damage and thermal effect using ultrasonic and drilling techniques for the extraction of fractured abutment screws. Twenty abutment screws were randomly fractured into twenty dental implants and randomly extracted using the following removal techniques: Group A: drilling technique without irrigation (n = 10) (DT) and Group B: ultrasonic technique without irrigation (n = 10) (UT). The dental implants were submitted to a preoperative and postoperative micro-computed tomography (micro-CT) scan to obtain a Standard Tessellation Language (STL) digital file that determined the wear comparison by morphometry. Moreover, the thermographic effects generated by the DT and UT removal techniques were registered using a thermographic digital camera. Comparative analysis was performed by comparing the volumetric differences (mm3) between preoperative and postoperative micro-CT scans and thermographic results (°C) using the Student t test. The DT extracted 8/10 and the US 9/10 abutment screws. The pairwise comparison revealed statistically significant differences between the volumetric differences of postoperative and preoperative micro-CT scans of the DT (- 0.09 ± - 0.02mm3) and UT (- 0.93 ± - 0.32mm3) study groups (p = 0.0042); in addition, the pairwise comparison revealed statistically significant differences between the thermographic values of the DT (38.12 ± - 10.82 °C) and UT (78.52 ± 5.43 °C) study groups (p < 0.001). The drilling technique without irrigation provides a less removal capability, less conical internal hex implant-abutment connection damage and less thermal effect than ultrasonic technique for the extraction of fractured abutment screws; however, the ultrasonic technique resulted more effective for the extraction of fractured abutment screws.


Subject(s)
Dental Abutments , Dental Implants , Humans , Dental Stress Analysis/methods , Ultrasonics , X-Ray Microtomography , Torque , Bone Screws
15.
J Int Soc Prev Community Dent ; 12(3): 287-294, 2022.
Article in English | MEDLINE | ID: mdl-35966908

ABSTRACT

Objective: Implant abutment screws can fracture due to various biomechanical factors. Improper fit of the prosthesis, inadequate seating of the abutment, occlusal interference, and manufacturing errors are some of the causes that can result in an abutment screw fracture. Retrieval of the retained fractured abutment screw is quite challenging to the clinician. The objective of this review is to provide information on various fractured abutment screw retrieval techniques reported in literature and to formulate a structured treatment protocol for the management of fractured abutment screws. Materials and Methods: An electronic search of Scopus and PubMed databases was performed for articles between January 1989 and December 2021 using the keywords "Implant screw fracture" and "screw retrieval." Results: Most of the articles were of the opinion that abutment screw fractures occurred due to screw loosening. Both conservative approaches and the use of commercial retrieval kits have been advocated to retrieve the fractured abutment screws. Based on various review articles, an innovative novel technique to retrieve an abutment screw fractured due to excessive torque was devised in our unit. Conclusion: Although clinicians can use various techniques to remove fractured abutment screws, every effort should be made to eliminate the cause of screw fracture. Retrieval of the broken screw fragment should be done judiciously to prevent any internal damage to the implant structure.

16.
Materials (Basel) ; 15(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160721

ABSTRACT

The tightening torque applied to a screw in a provisional restoration immediately after implant placement in a fresh extraction socket is often too low to gain sufficient preload force. Therefore, abutment screw loosening is a common complication. The aim of this study was to investigate whether it is possible to increase the preload force of a given tightening torque by anodizing parts of the implant-abutment complex. In test group 1 (TG1), only the abutment screw was anodized, in four different stages, whereas in test group 2 (TG2), the abutment and the threaded sleeve were anodized in four anodizing stages (TG2a-TG2d). The control group (CG) consisted of non-anodized components. The results were tested for normal distribution, and the components were subsequently parametrically analyzed using a linear model. Both test groups showed higher preload forces compared to the non-anodized control group. The CG obtained an average preload force of 390 N at a tightening torque of 35 Ncm. Comparable values were already obtained at a tightening torque of 20 to 30 Ncm in TG1c/D and TG2b/d. It can be concluded that anodization of abutment screws and components is an effective measure to increase the preload force of the abutment screws by a given tightening torque.

17.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832374

ABSTRACT

Variations in the implant thread shape and occlusal load behavior may result in significant changes in the biological and mechanical properties of dental implants and surrounding bone tissue. Most previous studies consider a single implant thread design, an isotropic bone structure, and a static occlusal load. However, the effects of different thread designs, bone material properties, and loading conditions are important concerns in clinical practice. Accordingly, the present study performs Finite Element Analysis (FEA) simulations to investigate the static, quasi-static and dynamic response of the implant and implanted bone material under various thread designs and occlusal loading directions (buccal-lingual, mesiodistal and apical). The simulations focus specifically on the von Mises stress, displacement, shear stress, compressive stress, and tensile stress within the implant and the surrounding bone. The results show that the thread design and occlusal loading rate have a significant effect on the stress distribution and deformation of the implant and bone structure during clinical applications. Overall, the results provide a useful insight into the design of enhanced dental implants for an improved load transfer efficiency and success rate.

18.
Dent Mater ; 37(10): e493-e501, 2021 10.
Article in English | MEDLINE | ID: mdl-34479725

ABSTRACT

OBJECTIVE: Failure of dental implants treatment is frequently the result of bacterial colonization of implants followed by diseases like peri-implantitis. Recent studies have been made regarding the surface treatment of implants components, namely abutments that are in the interface of the living tissue with the implant. This work aimed at evaluating the antimicrobial profile of a silane-based coating with TiO2 adapted to an abutment screw, that was also developed as an anti-loosening agent, to prevent adhesion and migration of Gram + and Gram-bacteria, Staphylococcus aureus, and Escherichia coli, respectively. METHODS: Direct contact antimicrobial studies were conducted on coated and uncoated samples by resazurin fluorescent assay and cytotoxicity assessment was done via MTT indirect method on days 1 and 4. Sterilizations studies by FTIR analysis were also performed to understand the ideal balance between sterilization efficacy and coating functionality subjecting the samples to ethylene oxide, gamma irradiation, and autoclave sterilization, before antimicrobial testing. The implant system as a whole was also studied for its ability to block bacterial migration and preventing microleakage as well as an assessment of initial bacterial adhesion evaluated by scanning electron microscopy. RESULTS: Direct contact studies performed on coated samples showed a very high antimicrobial activity, while cytotoxicity assays revealed the coating to be safe and non-leachable. Sterilizations studies showed that the antimicrobial features of the coating were preserved and interchangeable regardless of the sterilization method. The implant system migration studies demonstrated that the implant system works as an efficient barrier for the studied bacteria. SIGNIFICANCE: The acquired results clearly show that it is possible to obtain a highly functional coating with obvious and marked antimicrobial features that together with an abutment that prevents bacterial migration and versatility in sterilization methodology has a very high potential in the dental implant field.


Subject(s)
Anti-Infective Agents , Dental Implants , Anti-Infective Agents/pharmacology , Bacteria , Bone Screws , Dental Abutments , Dental Implant-Abutment Design
19.
Gen Dent ; 69(5): 62-66, 2021.
Article in English | MEDLINE | ID: mdl-34424215

ABSTRACT

The aim of this study was to evaluate the influence of the geometry of the screwdriver-screw connection on the reverse torque of UCLA screws after repeated cycles of tightening and loosening in an implant-supported prosthesis. Thirty sets of external hex titanium implants, UCLA abutments, and UCLA abutment screws were divided into 3 experimental groups (n = 10). In the square group, the implant and UCLA abutment system were mounted in an upright position using a screw with a square screwdriver-screw connection. In the hexagonal group, the implant and UCLA abutment system were mounted in an upright position using a screw with a hexagonal screwdriver-screw connection. In the hexalobular group, the implant and UCLA abutment system were mounted at 70° using a dynamic UCLA abutment and screw with a hexalobular screwdriver-screw connection. Ten alternating torque-reverse torque cycles were applied to each screw using a screwdriver fixed at the end of a digital torque meter. The screws with a square connection resulted in less loss of reverse torque than the other types. Screws with a hexagonal connection showed a statistically significant loss of torque initially but remained constant for the remaining cycles. For the screws with a hexalobular connection, the loss of torque was greater, and substantial deformation of the plastic in the microstructure was noted. The screwdriver-screw connection geometry had a direct influence on the reverse torque of UCLA screws, and the initial reverse torque of the abutment screws with a square connection was greater than that of the hexagonal and hexalobular designs.


Subject(s)
Dental Abutments , Dental Implants , Bone Screws , Dental Stress Analysis , Humans , Torque
20.
J Adv Prosthodont ; 13(1): 65-70, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33747396

ABSTRACT

PURPOSE: Implant mechanical complications, including screw loosening, can influence dental implant success. It has been shown that torque values are affected by contamination occurred in implant-abutment (I/A) interface. This study aimed to examine the effects of blood, saliva, fluoride and chlorhexidine contamination on reverse torque values (RTVs) of abutment screws in oral conditions. MATERIALS AND METHODS: 50 fixtures were mounted into the stainless-steel holders and divided into five groups (n = 10). Except control group (NC), fixture screw holes in other groups were contaminated with chlorhexidine (CG), saliva (SG), blood (BG), or fluoride (FG). Abutment screws were tightened with a digital torque meter. I/A assemblies were subjected to thermocycling and cyclic loading. The mean RTVs were recorded and data were analyzed with one-way ANOVA and Tukey test. RESULTS: Except for specimens in SG (20.56 ± 1.33), other specimens in BG (21.11 ± 1.54), CG (22.89 ± 1.1) and FG (24.00 ± 1.12) displayed significantly higher RTVs compared to NC (19.00 ± 1.87). The highest RTVs were detected in CG and FG. CONCLUSION: The obtained data robustly suggest that RTVs were significantly affected by fluid contaminations. Specimens in FG and CG displayed the highest RTVs. Therefore, clinicians should have enough knowledge about probable contaminations in I/A interface in order to manage them during clinical procedure and to inform patients about using oral care products.

SELECTION OF CITATIONS
SEARCH DETAIL
...