Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.013
Filter
1.
J Control Release ; 373: 189-200, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39002798

ABSTRACT

Intracellular polymerization in living cells motivated chemists to generate polymeric structures with a multitude of possibilities to interact with biomacromolecules. However, out-of-control of the intracellular chemical reactions would be an obstacle restricting its application, providing the toxicity of non-targeted cells. Here, we reported intracellular thioesterase-mediated polymerization for selectively occurring polymerization using disulfide bonds in cancer cells. The acetylated monomers did not form disulfide bonds even under an oxidative environment, but they could polymerize into the polymeric structure after cleavage of acetyl groups only when encountered activity of thioesterase enzyme. Furthermore, acetylated monomers could be self-assembled with doxorubicin, providing doxorubicin loaded micelles for efficient intracellular delivery of drug and monomers. Since thioesterase enzymes were overexpressed in cancer cells specifically, the micelles were disrupted under activity of the enzyme and the polymerization could occur selectively in the cancer mitochondria. The resulting polymeric structures disrupted the mitochondrial membrane, thus activating the cellular death of cancer cells with high selectivity. This strategy selectively targets diverse cancer cells involving drug-resistant cells over normal cells. Moreover, the mitochondria targeting strategy overcomes the development of drug resistance even with repeated treatment. This approach provides a way for selective intracellular polymerization with desirable anticancer treatment.

2.
World J Gastrointest Oncol ; 16(6): 2727-2741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994152

ABSTRACT

BACKGROUND: Previous studies have shown that the Shi-pi-xiao-ji (SPXJ) herbal decoction formula is effective in suppressing hepatocellular carcinoma (HCC), but the underlying mechanisms are not known. Therefore, this study investigated whether the antitumor effects of the SPXJ formula in treating HCC were mediated by acetyl-coA acetyltransferase 1 (ACAT1)-regulated cellular stiffness. Through a series of experiments, we concluded that SPXJ inhibits the progression of HCC by upregulating the expression level of ACAT1, lowering the level of cholesterol in the cell membrane, and altering the cellular stiffness, which provides a new idea for the research of traditional Chinese medicine against HCC. AIM: To investigate the anti-tumor effects of the SPXJ formula on the malignant progression of HCC. METHODS: HCC cells were cultured in vitro with SPXJ-containing serum prepared by injecting SPXJ formula into wild-type mice. The apoptotic rate and proliferative, invasive, and migratory abilities of control and SPXJ-treated HCC cells were compared. Atomic force microscopy was used to determine the cell surface morphology and the Young's modulus values of the control and SPXJ-treated HCC cells. Plasma membrane cholesterol levels in HCC cells were detected using the Amplex Red cholesterol detection kit. ACAT1 protein levels were estimated using western blotting. RESULTS: Compared with the vehicle group, SPXJ serum considerably reduced proliferation of HCC cells, increased stiffness and apoptosis of HCC cells, inhibited migration and invasion of HCC cells, decreased plasma membrane cholesterol levels, and upregulated ACAT1 protein levels. However, treatment of HCC cells with the water-soluble cholesterol promoted proliferation, migration, and invasion of HCC cells as well as decreased cell stiffness and plasma membrane cholesterol levels, but did not alter the apoptotic rate and ACAT1 protein expression levels compared with the vehicle control. CONCLUSION: SPXJ formula inhibited proliferation, invasion, and migration of HCC cells by decreasing plasma membrane cholesterol levels and altering cellular stiffness through upregulation of ACAT1 protein expression.

3.
Int J Biol Macromol ; 275(Pt 1): 133580, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960227

ABSTRACT

Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and is responsible for acute invasive and non-invasive infections. Fight against pneumococcus is currently hampered by insufficient vaccine coverage and rising antimicrobial resistance, making the research necessary on novel drug targets. High-throughput mutagenesis has shown that acetyl-CoA carboxylase (ACC) is an essential enzyme in S. pneumoniae which converts acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis. ACC has four subunits; Biotin carboxyl carrier protein (BCCP), Biotin carboxylase (BC), Carboxyl transferase subunit α and ß. Biotinylation of S. pneumoniae BCCP (SpBCCP) is required for the activation of ACC complex. In this study, we have biophysically characterized the apo- and holo- biotinylating domain SpBCCP80. We have performed 2D and 3D NMR experiments to analyze the changes in amino acid residues upon biotinylation of SpBCCP80. Further, we used NMR backbone chemical shift assignment data for bioinformatical analyses to determine the secondary and tertiary structure of proteins. We observed major changes in AMKVM motif and thumb region of SpBCCP80 upon biotinylation. Overall, this work provides structural insight into the apo- to holo- conversion of SpBCCP80 which can be further used as a drug target against S. pneumoniae.

4.
Synth Syst Biotechnol ; 9(4): 784-792, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39021361

ABSTRACT

The diterpene ent-copalol is an important precursor to the synthesis of andrographolide and is found only in green chiretta (Andrographis paniculata). De novo biosynthesis of ent-copalol has not been reported, because the catalytic activity of ent-copalyl diphosphate synthase (CPS) is very low in microorganisms. In order to achieve the biosynthesis of ent-copalol, Saccharomyces cerevisiae was selected as the chassis strain, because its endogenous mevalonate pathway and dephosphorylases could provide natural promotion for the synthesis of ent-copalol. The strain capable of synthesizing diterpene geranylgeranyl pyrophosphate was constructed by strengthening the mevalonate pathway genes and weakening the competing pathway. Five full-length ApCPSs were screened by transcriptome sequencing of A. paniculata and ApCPS2 had the best activity and produced ent-CPP exclusively. The peak area of ent-copalol was increased after the ApCPS2 saturation mutation and its configuration was determined by NMR and ESI-MS detection. By appropriately optimizing acetyl-CoA supply and fusion-expressing key enzymes, 35.6 mg/L ent-copalol was generated. In this study, de novo biosynthesis and identification of ent-copalol were achieved and the highest titer ever reported. It provides a platform strain for the further pathway analysis of andrographolide and derivatives and provides a reference for the synthesis of other pharmaceutical intermediates.

5.
Appl Environ Microbiol ; : e0104724, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028195

ABSTRACT

Phloroglucinol (1,3,5-trihydroxybenzene) is a key intermediate in the degradation of polyphenols such as flavonoids and hydrolysable tannins and can be used by certain bacteria as a carbon and energy source for growth. The identification of enzymes that participate in the fermentation of phloroglucinol to acetate and butyrate in Clostridia was recently reported. In this study, we present the discovery and characterization of a novel metabolic pathway for phloroglucinol degradation in the bacterium Collinsella sp. zg1085, from marmot respiratory tract. In both the Clostridial and Collinsella pathways, phloroglucinol is first reduced to dihydrophoroglucinol by the NADPH-dependent phloroglucinol reductase (PGR), followed by ring opening to form (S)-3-hydroxy-5-oxohexanoate by a Mn2+-dependent dihydrophloroglucinol cyclohydrolase (DPGC). In the Collinsella pathway, (S)-3-hydroxy-5-oxohexanoate is then cleaved to form malonate semialdehyde and acetone by a newly identified aldolase (HOHA). Finally, a NADP+-dependent malonate-semialdehyde dehydrogenase converts malonate semialdehyde to CO2 and acetyl-CoA, an intermediate in carbon and energy metabolism. Recombinant expression of the Collinsella PGR, DPGC, and HOHA in E. coli enabled the conversion of phloroglucinol into acetone, providing support for the proposed pathway. Experiments with Olsenella profusa, another bacterium containing the gene cluster of interest, show that the PGR, DPGC, HOHA, and MSDH are induced by phloroglucinol. Our findings add to the variety of metabolic pathways for the degradation of phloroglucinol, a widely distributed phenolic compound, in the anaerobic microbiome.IMPORTANCEPhloroglucinol is an important intermediate in the bacterial degradation of polyphenols, a highly abundant class of plant natural products. Recent research has identified key enzymes of the phloroglucinol degradation pathway in butyrate-producing anaerobic bacteria, which involves cleavage of a linear triketide intermediate by a beta ketoacid cleavage enzyme, requiring acetyl-CoA as a co-substrate. This paper reports a variant of the pathway in the lactic acid bacterium Collinsella sp. zg1085, which involves cleavage of the triketide intermediate by a homolog of deoxyribose-5-phosphate aldolase, highlighting the variety of mechanisms for phloroglucinol degradation by different anaerobic bacterial taxa.

6.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893462

ABSTRACT

Baccatin III is a crucial precursor in the biosynthesis pathway of paclitaxel. Its main sources are extraction from Taxus or chemical synthesis using 10-deacetylbaccatin III (10-DAB) as substrate. However, these preparation approaches exhibit serious limitations, including the low content of baccatin III in Taxus and the complicated steps of chemical synthesis. Heterologous expression of 10-deacetylbaccatin III-10-O-acetyltransferase (TcDBAT) in microbial strains for biotransformation of 10-DAB is a promising alternative strategy for baccatin III production. Here, the promotion effects of glycerol supply and slightly acidic conditions with a low-temperature on the catalysis of recombinant TcDBAT strain were clarified using 10-DAB as substrate. Taxus needles is renewable and the content of 10-DAB is relatively high, it can be used as an effective source of the catalytic substrate 10-DAB. Baccatin III was synthesized by integrating the extraction of 10-DAB from renewable Taxus needles and in situ whole-cell catalysis in this study. 40 g/L needles were converted into 20.66 mg/L baccatin III by optimizing and establishing a whole-cell catalytic bioprocess. The method used in this study can shorten the production process of Taxus extraction for baccatin III synthesis and provide a reliable strategy for the efficient production of baccatin III by recombinant strains and the improvement of resource utilization rate of Taxus needles.


Subject(s)
Biotransformation , Taxoids , Taxus , Taxus/metabolism , Taxus/chemistry , Taxoids/metabolism , Alkaloids/biosynthesis , Alkaloids/metabolism , Alkaloids/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetyltransferases/metabolism , Acetyltransferases/genetics
7.
Plant J ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38944754

ABSTRACT

Female willows exhibit greater drought tolerance and benefit more from exogenous acetic acid (AA)-improved drought tolerance than males. However, the potential mechanisms driving these sex-specific responses remain unclear. To comprehensively investigate the sexually dimorphic responsive mechanisms of willows to drought and exogenous AA, here, we performed physiological, proteomic, Lys-acetylproteomic, and transgenic analyses in female and male Salix myrtillacea exposed to drought and AA-applicated drought treatments, focusing on protein abundance and lysine acetylation (LysAc) changes. Drought-tolerant females suffered less drought-induced photosynthetic and oxidative damage, did not activate AA and acetyl-CoA biosynthesis, TCA cycle, fatty acid metabolism, and jasmonic acid signaling as strongly as drought-sensitive males. Exogenous AA caused overaccumulation of endogenous AA and inhibition of acetyl-CoA biosynthesis and utilization in males. However, exogenous AA greatly enhanced acetyl-CoA biosynthesis and utilization and further enhanced drought performance of females, possibly determining that AA improved drought tolerance more in females than in males. Interestingly, overexpression of acetyl-CoA synthetase (ACS) could reprogram fatty acids, increase LysAc levels, and improve drought tolerance, highlighting the involvement of ACS-derived acetyl-CoA in drought responses. In addition, drought and exogenous AA induced sexually dimorphic LysAc associated with histones, transcription factors, and metabolic enzymes in willows. Especially, exogenous AA may greatly improve the photosynthetic capacity of S. myrtillacea males by decreasing LysAc levels and increasing the abundances of photosynthetic proteins. While hyperacetylation in glycolysis, TCA cycle, and fatty acid biosynthesis potentially possibly serve as negative feedback to acclimate acetyl-CoA biosynthesis and utilization in drought-stressed males and AA-applicated females. Thus, acetyl-CoA biosynthesis and utilization determine the sexually dimorphic responses of S. myrtillacea to drought and exogenous AA.

8.
J Nutr Biochem ; 131: 109678, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38844080

ABSTRACT

The solute carrier family 25 member 1 (Slc25a1)-dependent mitochondrial citrate shuttle is responsible for exporting citrate from the mitochondria to the cytoplasm for supporting lipid biosynthesis and protein acetylation. Previous studies on Slc25a1 concentrated on pathological models. However, the importance of Slc25a1 in maintaining metabolic homeostasis under normal nutritional conditions remains poorly understood. Here, we investigated the mechanism of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis in male Nile tilapia (Oreochromis niloticus). To achieve the objective, we blocked the mitochondrial citrate shuttle by inhibiting Slc25a1 under normal nutritional conditions. Slc25a1 inhibition was established by feeding Nile tilapia with 250 mg/kg 1,2,3-benzenetricarboxylic acid hydrate for 6 weeks or intraperitoneal injecting them with dsRNA to knockdown slc25a1b for 7 days. The Nile tilapia with Slc25a1 inhibition exhibited an obesity-like phenotype accompanied by fat deposition, liver damage and hyperglycemia. Moreover, Slc25a1 inhibition decreased hepatic citrate-derived acetyl-CoA, but increased hepatic triglyceride levels. Furthermore, Slc25a1 inhibition replenished cytoplasmic acetyl-CoA through enhanced acetate pathway, which led to hepatic triglycerides accumulation. However, acetate-derived acetyl-CoA caused by hepatic Slc25a1 inhibition did not activate de novo lipogenesis, but rather modified protein acetylation. In addition, hepatic Slc25a1 inhibition enhanced fatty acids esterification through acetate-derived acetyl-CoA, which increased Lipin1 acetylation and its protein stability. Collectively, our results illustrate that inhibiting mitochondrial citrate shuttle triggers lipid anabolic remodeling and results in lipid accumulation, indicating the importance of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis.

9.
Anim Genet ; 55(4): 644-657, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922751

ABSTRACT

We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.


Subject(s)
Sheep, Domestic , Animals , Female , Sheep, Domestic/genetics , Pregnancy , Gene Duplication , Insemination, Artificial/veterinary , Homozygote , Frameshift Mutation , Abortion, Veterinary/genetics , Haplotypes , Sheep/genetics
10.
Int J Biol Macromol ; 274(Pt 2): 133055, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866271

ABSTRACT

Previously, we biosynthesized an evolved version of a bio-based polylactide (PLA) on microbial platforms using our engineered lactate-polymerizing enzyme (LPE). This lactate (LA)-based copolyester, LAHB, has advantages over PLA, including improved flexibility and biodegradability, and its properties can be regulated through the LA fraction. To expand the LA-incorporation capacity and improve polymer properties, in the state of in vivo LAHB production, propionyl-CoA transferases (PCTs) that exhibited enhanced production of LA-CoA than the conventional PCTs were selected. Here, the present study has demonstrated that the LA fraction of LAHB could be altered using various PCTs. Enhanced PCT performance was achieved by balancing polymer production and cell growth. Both events are governed by the use of acetyl-CoA, a commonly shared key metabolite. This could be attributed to the different reactivities of individual PCTs towards acetyl-CoA, which serves both as a CoA donor and a leading compound in the TCA cycle. Interestingly, we found complete sequence randomness in the LAHB copolymers, independent of the LA fraction. The mechanism of LA fraction-independent sequence randomness is discussed. This new PCT-based strategy synergistically combines with the evolution of LPE to advance the LAHB project, and enables us to perform advanced applications other than LAHB production utilizing CoA-linked substrates.

11.
Article in English | MEDLINE | ID: mdl-38861306

ABSTRACT

Reductive soil disinfestation (RSD), also known as biological soil disinfestation, is a bioremediation method used to suppress soil-borne plant pathogens by stimulating the activity of indigenous anaerobic bacteria in the soil. An anaerobic bacterial strain (E14T) was isolated from an anoxic soil sample subjected to RSD treatment and then comprehensively characterized. Cells of the strain were Gram-stain-positive, curved to sigmoid, and spore-forming rods. Cells were motile with a polar flagellum. Strain E14T grew in peptone-yeast extract broth, indicating that it utilized proteinous compounds. Strain E14T was also saccharolytic and produced acetate, isobutyrate, butyrate, isovalerate and gases (H2 and CO2) as fermentation products. The strain did not decompose any of examined polysaccharides except for starch. The major cellular fatty acids of strain E14T were iso-C15:0 and iso-C15:0 DMA. The closest relative to strain E14T, based on 16S rRNA gene sequences, was Clostridium thermarum SYSU GA15002T (96.2 %) in the Clostridiaceae. Whole-genome analysis of strain E14T showed that its genome was 4.66 Mb long with a genomic DNA G+C content of 32.5 mol%. The average nucleotide identity (ANIb) between strain E14T and C. thermarum SYSU GA15002T was 69.0 %. The presence of the genes encoding glycolysis and butyrate production via the acetyl-CoA pathway was confirmed through genome analysis. Based on the obtained phylogenetic, genomic and phenotypic data, we propose that strain E14T should be assigned to the genus Clostridium in the family Clostridiaceae as Clostridium omnivorum sp. nov. The type strain is E14T (=NBRC 115133T=DSM 114974T).


Subject(s)
Bacterial Typing Techniques , Base Composition , Clostridium , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Clostridium/genetics , Clostridium/isolation & purification , Clostridium/classification , DNA, Bacterial/genetics , Genome, Bacterial , Anaerobiosis , Biodegradation, Environmental
12.
Transl Oncol ; 47: 102043, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909457

ABSTRACT

Renal cell carcinoma (RCC) stands as a prevalent malignancy within urological pathology, exhibiting a noteworthy escalation in its incidence. Despite being a mitochondrial enzyme, the precise role of Acetyl-CoA Acetyltransferase 1 (ACAT1) in RCC remains elusive. In this investigation, we employed bioinformatics methodologies to assess the expression patterns and prognostic significance across various RCC subtypes, encompassing clear cell renal cell carcinoma (ccRCC), papillary cell carcinoma, and chromophobe cell carcinoma. Our findings unveil a close correlation between ACAT1 expression and the prognostic implications specifically within ccRCC. Through both in vitro and in vivo overexpression studies, we delineated the functional and mechanistic facets of ACAT1 in impeding the progression of ccRCC. Our results unequivocally demonstrated that ACAT1 overexpression markedly curtailed proliferation, invasion, and metastasis of ccRCC cells in both in vivo models and cell cultures. Mechanistically, ACAT1's inhibitory effect on the AMPK signaling pathway orchestrated a regulatory role in modulating fatty acid metabolism, thereby effectively restraining the advancement of ccRCC. Collectively, our findings underscore ACAT1 as a pivotal tumor suppressor, instrumental in curtailing the proliferation, migration, and invasion of ccRCC by governing fatty acid metabolism through the AMPK signaling pathway. These insights posit ACAT1 as a potential predictive biomarker and therapeutic target warranting further exploration in RCC management.

13.
Front Pharmacol ; 15: 1394685, 2024.
Article in English | MEDLINE | ID: mdl-38818373

ABSTRACT

Breast cancer brain metastasis (BCBM) typically results in an end-stage diagnosis and is hindered by a lack of brain-penetrant drugs. Tumors in the brain rely on the conversion of acetate to acetyl-CoA by the enzyme acetyl-CoA synthetase 2 (ACSS2), a key regulator of fatty acid synthesis and protein acetylation. Here, we used a computational pipeline to identify novel brain-penetrant ACSS2 inhibitors combining pharmacophore-based shape screen methodology with absorption, distribution, metabolism, and excretion (ADME) property predictions. We identified compounds AD-5584 and AD-8007 that were validated for specific binding affinity to ACSS2. Treatment of BCBM cells with AD-5584 and AD-8007 leads to a significant reduction in colony formation, lipid storage, acetyl-CoA levels and cell survival in vitro. In an ex vivo brain-tumor slice model, treatment with AD-8007 and AD-5584 reduced pre-formed tumors and synergized with irradiation in blocking BCBM tumor growth. Treatment with AD-8007 reduced tumor burden and extended survival in vivo. This study identifies selective brain-penetrant ACSS2 inhibitors with efficacy towards breast cancer brain metastasis.

14.
J Fungi (Basel) ; 10(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786682

ABSTRACT

The mold Aspergillus fumigatus employs two high-affinity uptake systems, reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA), for the acquisition of the essential trace element iron. SIA has previously been shown to be crucial for virulence in mammalian hosts. Here, we show that a lack of AcuK or AcuM, transcription factors required for the activation of gluconeogenesis, decreases the production of both extra- and intracellular siderophores in A. fumigatus. The lack of AcuM or AcuK did not affect the expression of genes involved in RIA and SIA, suggesting that these regulators do not directly regulate iron homeostasis genes, but indirectly affect siderophore production through their influence on metabolism. Consistent with this, acetate supplementation reversed the intracellular siderophore production defect of ΔacuM and ΔacuK. Moreover, ΔacuM and ΔacuK displayed a similar growth defect under iron limitation and iron sufficiency, which suggests they have a general role in carbon metabolism apart from gluconeogenesis. In agreement with a potential role of the glyoxylate cycle in adaptation to iron starvation, transcript levels of the malate synthase-encoding acuE were found to be upregulated by iron limitation that is partially dependent on AcuK and AcuM. Together, these data demonstrate the influence of iron availability on carbon metabolism.

15.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752706

ABSTRACT

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Subject(s)
Acetyl-CoA Carboxylase , Enzyme Inhibitors , Herbicide Resistance , Herbicides , Mutation , Oryza , Plant Proteins , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/chemistry , Oryza/genetics , Oryza/enzymology , Herbicides/pharmacology , Herbicides/chemistry , Herbicide Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/enzymology
16.
mBio ; 15(6): e0079024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38742872

ABSTRACT

Loss of the Escherichia coli inner membrane protein YhcB results in pleomorphic cell morphology and clear growth defects. Prior work suggested that YhcB was directly involved in cell division or peptidoglycan assembly. We found that loss of YhcB is detrimental in genetic backgrounds in which lipopolysaccharide (LPS) or glycerophospholipid (GPL) synthesis is altered. The growth defect of ΔyhcB could be rescued through inactivation of the Mla pathway, a system responsible for the retrograde transport of GPLs that are mislocalized to the outer leaflet of the outer membrane. Interestingly, this rescue was dependent upon the outer membrane phospholipase PldA that cleaves GPLs at the bacterial surface. Since the freed fatty acids resulting from PldA activity serve as a signal to the cell to increase LPS synthesis, this result suggested that outer membrane lipids are imbalanced in ΔyhcB. Mutations that arose in ΔyhcB populations during two independent suppressor screens were in genes encoding subunits of the acetyl coenzyme A carboxylase complex, which initiates fatty acid biosynthesis (FAB). These mutations fully restored cell morphology and reduced GPL levels, which were increased compared to wild-type bacteria. Growth of ΔyhcB with the FAB-targeting antibiotic cerulenin also increased cellular fitness. Furthermore, genetic manipulation of FAB and lipid biosynthesis showed that decreasing FAB rescued ΔyhcB filamentation, whereas increasing LPS alone could not. Altogether, these results suggest that YhcB may play a pivotal role in regulating FAB and, in turn, impact cell envelope assembly and cell division.IMPORTANCESynthesis of the Gram-negative cell envelope is a dynamic and complex process that entails careful coordination of many biosynthetic pathways. The inner and outer membranes are composed of molecules that are energy intensive to synthesize, and, accordingly, these synthetic pathways are under tight regulation. The robust nature of the Gram-negative outer membrane renders it naturally impermeable to many antibiotics and therefore a target of interest for antimicrobial design. Our data indicate that when the inner membrane protein YhcB is absent in Escherichia coli, the pathway for generating fatty acid substrates needed for all membrane lipid synthesis is dysregulated which leads to increased membrane material. These findings suggest a potentially novel regulatory mechanism for controlling the rate of fatty acid biosynthesis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Fatty Acids , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Glycerophospholipids/metabolism , Lipopolysaccharides/biosynthesis , Membrane Proteins/genetics , Membrane Proteins/metabolism
17.
J Biol Chem ; 300(7): 107412, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796064

ABSTRACT

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.

18.
Cancer Cell Int ; 24(1): 130, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584256

ABSTRACT

BACKGROUND: Fatty acids synthesis and metabolism (FASM)-driven lipid mobilization is essential for energy production during nutrient shortages. However, the molecular characteristics, physiological function and clinical prognosis value of FASM-associated gene signatures in hepatocellular carcinoma (HCC) remain elusive. METHODS: The Gene Expression Omnibus database (GEO), the Cancer Genome Atlas (TCGA), and International Cancer Genome Consortium (ICGC) database were utilized to acquire transcriptome data and clinical information of HCC patients. The ConsensusClusterPlus was employed for unsupervised clustering. Subsequently, immune cell infiltration, stemness index and therapeutic response among distinct clusters were decoded. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to anticipate the response of patients towards immunotherapy, and the genomics of drug sensitivity in cancer (GDSC) tool was employed to predict their response to antineoplastic medications. Least absolute shrinkage and selection operator (LASSO) regression analysis and protein-protein interaction (PPI) network were employed to construct prognostic model and identity hub gene. Single cell RNA sequencing (scRNA-seq) and CellChat were used to analyze cellular interactions. The hub gene of FASM effect on promoting tumor progression was confirmed through a series of functional experiments. RESULTS: Twenty-six FASM-related genes showed differential expression in HCC. Based on these FASM-related differential genes, two molecular subtypes were established, including Cluster1 and Cluster2 subtype. Compared with cluster2, Cluster1 subtype exhibited a worse prognosis, higher risk, higher immunosuppressive cells infiltrations, higher immune escape, higher cancer stemness and enhanced treatment-resistant. PPI network identified Acetyl-CoA carboxylase1 (ACACA) as central gene of FASM and predicted a poor prognosis. A strong interaction between cancer stem cells (CSCs) with high expression of ACACA and macrophages through CD74 molecule (CD74) and integrin subunit beta 1 (ITGB1) signaling was identified. Finally, increased ACACA expression was observed in HCC cells and patients, whereas depleted ACACA inhibited the stemness straits and drug resistance of HCC cells. CONCLUSIONS: This study provides a resource for understanding FASM heterogeneity in HCC. Evaluating the FASM patterns can help predict the prognosis and provide new insights into treatment response in HCC patients.

19.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G697-G711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38591127

ABSTRACT

Sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) is a widely expressed membrane glycoprotein that acts as an important modulator of lipid metabolism and inflammatory stress. N-glycosylation of SCAP has been suggested to modulate cancer development, but its role in nonalcoholic steatohepatitis (NASH) is poorly understood. In this study, the N-glycosylation of SCAP was analyzed by using sequential trypsin proteolysis and glycosidase treatment. The liver cell lines expressing wild-type and N-glycosylation sites mutated SCAP were constructed to investigate the N-glycosylation role of SCAP in regulating inflammation and lipid accumulation as well as the underlying mechanisms. The hepatic SCAP protein levels were significantly increased in C57BL/6J mice fed with Western diet and sugar water (WD + SW) and diabetic db/db mice, which exhibited typical liver steatosis and inflammation accompanied with hyperglycemia. In vitro, the enhanced N-glycosylation by high glucose increased the protein stability of SCAP and hence increased its total protein levels, whereas the ablation of N-glycosylation significantly decreased SCAP protein stability and alleviated lipid accumulation and inflammation in hepatic cell lines. Mechanistically, SCAP N-glycosylation increased not only the SREBP-1-mediated acetyl-CoA synthetase 2 (ACSS2) transcription but also the AMPK-mediated S659 phosphorylation of ACCS2 protein, causing the enhanced ACSS2 levels in nucleus and hence increasing the histone H3K27 acetylation (H3K27ac), which is a key epigenetic modification associated with NASH. Modulating ACSS2 expression or its location in the nuclear abolished the effects of SCAP N-glycosylation on H3K27ac and lipid accumulation and inflammation. In conclusion, SCAP N-glycosylation aggravates inflammation and lipid accumulation through enhancing ACSS2-mediated H3K27ac in hepatocytes.NEW & NOTEWORTHY N-glycosylation of SCAP exacerbates inflammation and lipid accumulation in hepatocytes through ACSS2-mediated H3K27ac. Our data suggest that SCAP N-glycosylation plays a key role in regulating histone H3K27 acetylation and targeting SCAP N-glycosylation may be a new strategy for treating nonalcoholic steatohepatitis (NASH).


Subject(s)
Histones , Intracellular Signaling Peptides and Proteins , Lipid Metabolism , Membrane Proteins , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Glycosylation , Histones/metabolism , Acetylation , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Lipid Metabolism/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Male , Humans , Liver/metabolism , Liver/pathology
20.
J Neuroimmunol ; 390: 578344, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38640826

ABSTRACT

BACKGROUND: Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS: The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS: Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS: MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.


Subject(s)
Acetyl-CoA Carboxylase , Brain Ischemia , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Mice , Acetyl-CoA Carboxylase/genetics , Brain Ischemia/immunology , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...