Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.294
Filter
2.
Angew Chem Int Ed Engl ; : e202409419, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975974

ABSTRACT

The local acidity at the anode surface during electrolysis is apparently stronger than that in bulk electrolyte due to the deprotonation from the reactant, which leads to the deteriorated electrocatalytic performances and product distributions. Here, an anode-electrolyte interfacial acidity regulation strategy has been proposed to inhibit local acidification at the surface of anode and enhance the electrocatalytic activity and selectivity of anodic reactions. As a proof of the concept, CeO2-x Lewis acid component has been employed as a supporter to load Au nanoparticles to accelerate the diffusion and enrichment of OH- toward the anode surface, so as to accelerate the electrocatalytic alcohol oxidation reaction. As the result, Au/CeO2-x exhibits much enhanced lactic acid selectivity of 81% and electrochemical activity of 693 mA·cm-2 current density in glycerol oxidation reaction compared to pure Au. Mechanism investigation reveals that the introduced Lewis acid promotes the mass transport and concentration of OH- on the anode surface, thus promoting the generation of lactic acid through the simultaneous enhancements of Faradaic and non-Faradaic processes. Attractively, the proposed strategy can be used for the electro-oxidation performance enhancements of a variety of alcohols, which thereby provides a new perspective for efficient alcohol electro-oxidations and the corresponding electrocatalyst design.

3.
Angew Chem Int Ed Engl ; : e202410291, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990168

ABSTRACT

Establishing unprecedented types of bonding interactions is one of the fundamental challenges in synthetic chemistry, paving the way to new (electronic) structures, physicochemical properties, and reactivity. In this context, unsupported element-element interactions are particularly noteworthy since they offer pristine scientific information about the newly identified structural motif. Here we report the synthesis, isolation, and full characterization of the heterobimetallic Bi / Pt compound [Pt(PCy3)2(BiMe2)(SbF6)] (1), bearing the first unsupported transition metal→bismuth donor/acceptor interaction as its key structural motif. 1 is surprisingly robust, its electronic spectra are interpreted in a fully relativistic approach, and it reveals an unprecedented reactivity towards H2.

4.
Article in English | MEDLINE | ID: mdl-38981038

ABSTRACT

Effective management of volatile organic compounds (VOCs) and carbon monoxide (CO) is critical to human health and the ecological environment. Catalytic oxidation is one of the most promising technologies for achieving efficient VOCs and CO emission control. Platinum group metal (PGM)-free catalysts are recently receiving sustainable attention in catalyzing VOCs and CO removal due to their low cost, superior catalytic activity, and excellent stability, but PGM-free catalysts face challenges in low-temperature catalytic efficiency. In this mini-review, starting with discussing the catalytic mechanism of VOCs and CO oxidation, we summarize the surface/interface modulation strategies of PGM-free catalysts to promote oxygen and VOCs/CO molecule activation for enhanced low-temperature oxidation activity, including oxygen vacancy engineering, heteroatom doping, surface acidity modification, and active interface construction. We highlight the currently remaining challenges and prospects of advanced PGM-free catalyst development for highly efficient VOCs and CO emission control in practical applications.

5.
J Food Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955773

ABSTRACT

Color changes in wheat and cooking water, which affect the quality of bulgur and wastewater, are important. Understanding the impacts of cooking water acidity, hardness, and iron content is significant for producing bright-yellow colored bulgur and determining the possible negative effects of cooking water on the environment. Thereby, the gelatinization degree and color (L*, a*, b*, and yellowness index) of wheat cooked with waters at different pH (3, 5, 7, 9, and 11), hardness (soft, hard, and very hard), and iron content (0, 1, and 2 mg/L) were determined every 10 min of cooking. pH, Brix, conductivity, hardness, turbidity, and color of cooking waters were also determined and kinetically modeled. After cooking, it was revealed that cooking with water at pH 3 favored the color of cooked wheat, whereas pH 11 caused darkening. Nevertheless, as the wastewater pH of cooking waters with pH 3 and 11 may be harmful to the environment, it is recommended to use water in the range of pH 5-9 for bulgur production. Cooking with very hard water is also not recommended as it causes some adverse effects such as diminishing the gelatinization rate in wheat, increasing the cooking time, and negatively affecting the color.

6.
Environ Pollut ; 358: 124472, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945190

ABSTRACT

In recent years, there has been a growing concern about air pollution and its impact on the air quality and human health, especially for fine particulate matter (PM2.5) and its associated secondary aerosols in urban areas. This study conducted a year-long field campaign to collect PM2.5 samples day and night in an urban area of central Taiwan. Higher PM2.5 mass concentrations were observed in winter (27.7 ± 9.7 µg/m3), followed by autumn (22.5 ± 8.3 µg/m3), spring (19.2 ± 6.4 µg/m3), and summer (11.0 ± 3.1 µg/m3). The dominant formation mechanism of secondary inorganic aerosols was heterogeneous reactions of NO3- at night and homogeneous reactions of SO42- during the day. Additionally, significant correlations were observed between aerosol liquid water content (ALWC) and NO3- during nighttime, indicating the importance of aqueous-phase NO3- formation. The role of aerosol acidity was explored and a unique alkaline condition was found in spring and summer, which showed lower PM2.5 concentrations than the neutralized condition. Under the neutralized condition, higher PM2.5 concentrations were commonly found when combining the ammonium-rich regime with molar ratios of [NO3-]/[SO42-] exceeding 1.6, suggesting the importance of reducing both NH3 and NOx. Furthermore, the results showed that reducing NH3 should be prioritized under high temperature conditions, while reducing NOx became important under low temperature conditions. Clustering of backward trajectories showed that long-range transport could enhance the formation of secondary aerosols, but local emissions emerged as the main factor driving high PM2.5 concentrations. This study provides insights for policymakers to improve air quality, suggesting that different mitigation strategies should be formulated based on meteorological variables and that using clean energy for vehicles and electricity generation is important to alleviate air pollution.

7.
J Environ Manage ; 365: 121511, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909579

ABSTRACT

Understanding the spatial distribution of plant available soil nutrients and influencing soil properties and delineation soil nutrient management zones (MZs) are important for implementing precision nutrient management options (PNMO) in an area to achieve maintainable crop production. We assessed spatial distribution pattern of plant available sulphur (S) (PAS), boron (B) (PAB), zinc (PAZn), manganese (PAMn), iron (PAFe), and copper (PACu), and soil organic carbon (SOC), pH, and electrical conductivity (EC) to delineate soil nutrients MZs in northeastern region of India. A total of 17,471 representative surface (0-15 cm depth) soil samples were collected from the region, processed, and analysed for above-mentioned soil parameters. The values of PAS (0.22-99.2 mg kg-1), PAB (0.01-6.45 mg kg-1), PAZn (0.05-13.9 mg kg-1), PAMn (0.08-158 mg kg-1), PAFe (0.50-472 mg kg-1), PACu (0.01-19.2 mg kg-1), SOC (0.01-5.80%), pH (3.19-7.56) and EC (0.01-1.66 dS m-1) varied widely with coefficient of variation of 15.5-108%. The semivariogram analysis highlighted exponential, Gaussian and stable best fitted models for soil parameters with weak (PACu), moderate (PAB, PAZn, PAFe, SOC, pH, and EC) and strong (PAS, and PAMn) spatial dependence. The ordinary kriging interpolation revealed different distribution patterns of soil parameters. About 14.8, 27.5, and 3.40% area of the region had PAS of ≤15.0 mg kg-1, PAB of ≤0.50 mg kg-1, and PAZn of had ≤0.90 mg kg-1, respectively. About 67.5, and 32.5% area had SOC content >1.00 and < 1.00%, respectively. Soil pH was ≤5.50, and >5.50 to ≤6.50 in 41.7 and 40.3% area of the region, respectively. The techniques of principal component analysis and fuzzy c-mean algorithm clustering produced 6 MZs of the region with different areas and values of soil parameters. The MZs had different levels of deficiency pertaining to PAS, PAB, and PAZn. The produced MZ maps could be used for managing PAS, PAB, PAZn, SOC and soil pH in order to implement PNMO. The study highlighted the usefulness of MZ delineation technique for implementation of PNMO in different cultivated areas for sustainable crop production.

8.
Int J Biol Macromol ; 275(Pt 1): 133507, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944082

ABSTRACT

Deep eutectic solvents (DESs) hold great potential in biorefining because they can efficiently deconstruct the recalcitrant structure of lignocellulose. In particular, inorganic salts with Lewis acids have been proven to be effective at cleaving lignin-carbohydrate complexes. Herein, a Zr-based DES system composed of metal chloride hydrate (ZrOCl2·8H2O) and ethylene glycol (EG) was designed and used for poplar powder pretreatment. Zr4+-based salts provide sufficient acidity for lignocellulose depolymerization. The acidity of the DES was analysed by the Kamlet-Taft solvatochromic parameter, and the results demonstrated that the acidity can be regulated by the DES composition. Under the optimum conditions (ZrOCl2·8H2O:EG molar ratio of 1:2), the DES pretreatment removes nearly 100 % hemicellulose and 94.7 % lignin. The recovered lignin exhibited a low polydispersity of 1.7. The cellulose residues deliver an efficiency of 94.4 % upon enzymatic digestion. Moreover, the DES can be easily recovered with high yield and purity, and the recycled DES still maintains high delignification and enzymatic hydrolysis efficiencies. The proposed DES pretreatment technology is promising for biomass valorization.

9.
ACS Nano ; 18(26): 16489-16504, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38899523

ABSTRACT

Lithium-oxygen (Li-O2) batteries have obtained widespread attention as next-generation energy storage systems due to their extremely high energy density. However, the high charge overpotential, attributed to the insulating property of Li2O2, significantly limits the energy efficiency and triggers solvent degradation. The high electrochemical activities of oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) on the cathode are crucial for alleviating the high charging polarizations and enhancing the lifetime of Li-O2 batteries, which are also top challenges of state-of-art research. In this review, the scientific challenges and the proposed solutions in the development of cathode catalysts have been summarized. The recent research advancements on the nanoengineering of cathode catalysts for Li-O2 batteries have been comprehensively discussed, and the perspectives on the structure optimization are presented. Meanwhile, we have elucidated the structure-performance relationship between the electronic state and performance of the cathode catalysts at the nanoscale level. This review intends to provide guidelines for the design and construction of cathode catalysts in advanced Li-O2 batteries.

10.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893585

ABSTRACT

The wide use of boronic compounds, especially boronic acids and benzoxaboroles, in virtually all fields of chemistry is related to their specific properties. The most important of them are the ability to form cyclic esters with diols and the complexation of anions. In both cases, the equilibrium of the reaction depends mainly on the acidity of the compounds, although other factors must also be taken into account. Quantification of the acidity (pKa value) is a fundamental factor considered when designing new compounds of practical importance. The aim of the current work was to collect available values of the acidity constants of monosubstituted phenylboronic acids, critically evaluate these data, and supplement the database with data for missing compounds. Measurements were made using various methods, as a result of which a fast and reliable method for determining the pKa of boronic compounds was selected. For an extensive database of monosubstituted phenylboronic acids, their correlation with their Brønsted analogues-namely carboxylic acids-was examined. Compounds with ortho substituents do not show any correlation, which is due to the different natures of both types of acids. Nonetheless, both meta- and para-substituted compounds show excellent correlation. From a practical point of view, acidity constants are best determined from the Hammett equation. Computational approaches for determining acidity constants were also analyzed. In general, the reported calculated values are not compatible with experimental ones, providing comparable results only for selected groups of compounds.

11.
Foods ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38890985

ABSTRACT

Factors influencing the sour taste of coffee and the properties of chlorogenic acid are not yet fully understood. This study aimed to evaluate the impact of roasting degree on pH-associated changes in coffee bean extract and the thermal stability of chlorogenic acid. Coffee bean extract pH decreased up to a chromaticity value of 75 but increased with higher chromaticity values. Ultraviolet-visible spectrophotometry and structural analysis attributed this effect to chlorogenic and caffeic acids. Moreover, liquid chromatography-mass spectrometry analysis identified four chlorogenic acid types in green coffee bean extract. Chlorogenic acid isomers were eluted broadly on HPLC, and a chlorogenic acid fraction graph with two peaks, fractions 5 and 9, was obtained. Among the various fractions, the isomer in fraction 5 had significantly lower thermal stability, indicating that thermal stability differs between chlorogenic acid isomers.

12.
ChemSusChem ; : e202400559, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860533

ABSTRACT

The ring-rearrangement of 5-hydroxymethylfurfural (HMF) to 3-hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid-base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 oC and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non-water path leading to the total hydrogenation product, 2,5-di-hydroxymethyl-tetrahydrofuran (DHMTHF), and two parallel acid-catalyzed water-mediated routes responsible for (ii) ring-opening and (iii) ring-rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF= 5.99 min-1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG-ox (initial TOF= 5.92 min-1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock are criticalyl led to catalyst deactivation by coke deposition and Ni poisoning, respectively.

13.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843196

ABSTRACT

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Subject(s)
Aerosols , Epoxy Compounds/chemistry , Hydrogen-Ion Concentration , Acid-Base Equilibrium
14.
Environ Technol ; : 1-20, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853669

ABSTRACT

High concentrations of ammonium, phosphate, and phenol are recognized as water pollutants that contribute to the degradation of soil acidity. In contrast, small quantities of these nutrients are essential for soil nutrient cycling and plant growth. Here, we reported composite materials comprising biochar, chitosan, ZrO, and Fe3O4, which were employed to mitigate ammonium, phosphate, and phenol contamination in water and to lessen soil acidity. Batch adsorption experiments were conducted to assess the efficacy of the adsorbents. Initially, comparative studies on the simultaneous removal of NH4, PO4, and phenol using CB (biochar), CBC (biochar + chitosan), CBCZrO (biochar + chitosan + ZrO), and CBCZrOFe3O4 (biochar + chitosan + ZrO + Fe3O4) were conducted. The results discovered that CBCZrOFe3O4 exhibited the highest removal percentage among the adsorbents (P < 0.05). Adsorption data for CBCZrOFe3O4 were well fitted to the second-order kinetic and Freundlich isotherm models, with maximum adsorption capacities of 112.65 mg/g for NH4, 94.68 mg/g for PO4 and 112.63 mg/g for phenol. Subsequently, the effect of CBCZrOFe3O4-loaded NH4, PO4, and phenol (CBCZrOFe3O4-APP) on soil acidity was studied over a 60-day incubation period. The findings showed no significant changes (P < 0.05) in soil exchangeable acidity, H+, Mg, K, and Na. However, there was a substantial increase in the soil pH, EC, available P, CEC, N-NH4, and N-NO3. A significant reduction was also observed in the available soil exchangeable Al and Fe (P < 0.05). This technique demonstrated multi-functionality in remediating water pollutants and enhancing soil acidity.

15.
Chembiochem ; : e202400452, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940000

ABSTRACT

Cancer is one of the most serious threats to human health. Over the past few years, researchers have incrementally uncovered the pivotal role of tumor acidity in tumor formation, development and treatment through in-depth scientific research. In addition, bioorthogonal reactions have been widely used in tumor diagnosis and therapy, owing to their advantageous characteristics, including small ligand size, biocompatibility, fast reaction kinetics, and high chemospecificity. Consequently, bioorthogonal reactions triggered by tumor acidity have become an emerging strategy in biomedical applications. On this basis, we introduce the concept and major strategies of tumor acidity-triggered bioorthogonal reactions, and review their progress in biomedical applications, with a particular focus on their importance in disease diagnosis and treatment. Finally, clinical challenges and future trends are also outlooked.

16.
J Sep Sci ; 47(11): e2400174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867483

ABSTRACT

The review provides an overview of recent developments and applications of capillary electromigration (CE) methods for the determination of important physicochemical parameters of various (bio)molecules and (bio)particles. These parameters include actual and limiting (absolute) ionic mobilities, effective electrophoretic mobilities, effective charges, isoelectric points, electrokinetic potentials, hydrodynamic radii, diffusion coefficients, relative molecular masses, acidity (ionization) constants, binding constants and stoichiometry of (bio)molecular complexes, changes of Gibbs free energy, enthalpy and entropy and rate constants of chemical reactions and interactions, retention factors and partition and distribution coefficients. For the determination of these parameters, the following CE methods are employed: zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography. In the individual sections, the procedures for the determination of the above parameters by the particular CE methods are described.


Subject(s)
Electrophoresis, Capillary , Proteins/analysis , Proteins/chemistry , Thermodynamics , Isoelectric Focusing/methods , Molecular Weight , Humans
17.
Microorganisms ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792748

ABSTRACT

The principal objective of this study was to isolate and identify the microorganisms present in commercial kefir grains, a novel kefir-fermented coconut water (CWK) and a novel coconut water kefir-fermented sourdough using phenotypic identification and Sanger sequencing and examine the microbial diversity of CWK and CWK-fermented sourdough throughout the fermentation process using the MiSeq Illumina sequencing method. The phenotypic characterisation based on morphology identified ten isolates of LAB, five AAB and seven yeasts from kefir (K), CWK and CWK-fermented sourdough (CWKS). The results confirm the presence of the LAB species Limosilactobacillus fermentum, Lactobacillus. plantarum, L. fusant, L. reuteri and L. kunkeei; the AAB species Acetobacter aceti, A. lovaniensis and A. pasteurianus; and the yeast species Candida kefyr, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, C. guilliermondii and C. colliculosa. To the best of our knowledge, the identification of Rhodotorula from kefir is being reported for the first time. This study provides important insights into the relative abundances of the microorganisms in CWKS. A decrease in pH and an increase in the titratable acidity for CWK- and CWK-fermented sourdough corresponded to the increase in D- and L-lactic acid production after 96 h of fermentation. Significant reductions in the pHs of CWK and CWKS were observed between 48 and 96 h of fermentation, indicating that the kefir microorganisms were able to sustain highly acidic environments. There was also increased production of L-lactic acid with fermentation, which was almost twice that of D-lactic acid in CWK.

18.
Plants (Basel) ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794457

ABSTRACT

Nitrogen (N) is the most important nutrient in coffee, with a direct impact on productivity, quality, and sustainability. N uptake by the roots is dominated by ammonium (NH4+) and nitrates (NO3-), along with some organic forms at a lower proportion. From the perspective of mineral fertilizer, the most common N sources are urea, ammonium (AM), ammonium nitrates (AN), and nitrates; an appropriate understanding of the right balance between N forms in coffee nutrition would contribute to more sustainable coffee production through the better N management of this important crop. The aim of this research was to evaluate the influences of different NH4-N/NO3-N ratios in coffee from a physiological and agronomical perspective, and their interaction with soil water levels. Over a period of 5 years, three trials were conducted under controlled conditions in a greenhouse with different growing media (quartz sand) and organic soil, with and without water stress, while one trial was conducted under field conditions. N forms and water levels directly influence physiological responses in coffee, including photosynthesis (Ps), chlorophyll content, dry biomass accumulation (DW), nutrient uptake, and productivity. In all of the trials, the plants group in soils with N ratios of 50% NH4-N/50% NO3-N, and 25% NH4-N/75% NO3-N showed better responses to water stress, as well as a higher Ps, a higher chlorophyll content, a higher N and cation uptake, higher DW accumulation, and higher productivity. The soil pH was significantly influenced by the N forms: the higher the NO3--N share, the lower the acidification level. The results allow us to conclude that the combination of 50% NH4-N/50% NO3-N and 25% NH4-N/75% NO3-N N forms in coffee improves the resistance capacity of the coffee to water stress, improves productivity, reduces the soil acidification level, and improves ion balance and nutrient uptake.

19.
Plant Physiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758108

ABSTRACT

Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an AP2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR (ChIP-qPCR), luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.

20.
Plant Physiol Biochem ; 211: 108711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733941

ABSTRACT

Trace heavy metals (HMs) such as copper (Cu) and nickel (Ni) are toxic to plants, especially tomato at high levels. In this study, biochar (BC) was treated with amino acids (AA) to enhance amino functional groups, which effectively alleviated the adverse effects of heavy metals (HMs) on tomato growth. Hence, this study aimed to evaluate the effect of glycine and alanine modified BC (GBC/ABC) on various tomato growth parameters, its physiology, fruit yield and Cu/Ni uptake under Cu and Ni stresses. In a pot experiment, there was 21 treatments with three replications having two rates of simple BC and glycine/alanine enriched BC (0.5% and 1% (w/w). Cu and Ni stresses were added at 150 mg kg-1 respectively. Plants were harvested after 120 days of sowing and subjected to various analysis. Under Cu and Ni stresses, tomato roots accumulated more Cu and Ni than shoots and fruits, while GBC and ABC application significantly enhanced the root and shoot dry weight irrelevant to the stress conditions. Both rates of GBC decreased the malondialdehyde and hydrogen peroxide levels in plants. The addition of 0.5% GBC with Cu enhanced the tomato fruit dry weight by 1.3 folds in comparison to the control treatment; while tomato fruit juice content also increased (50%) in the presence of 0.5% GBC with Ni as compared to control. In summary, these results demonstrated that lower rate of GBC∼0.5% proved to be the best in mitigating the Cu and Ni stress on tomato plant growth by enhancing the fruit production.


Subject(s)
Amino Acids , Charcoal , Copper , Fruit , Nickel , Solanum lycopersicum , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Nickel/pharmacology , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Charcoal/pharmacology , Amino Acids/metabolism , Soil Pollutants , Stress, Physiological/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...