Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Clin Monit Comput ; 34(1): 139-146, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30478523

ABSTRACT

Respiration rate (RR) is a critical vital sign that provides early detection of respiratory compromise. The acoustic technique of measuring continuous respiration rate (RRa) interprets the large airway sound envelope to calculate respiratory rate while pulse oximetry-derived respiratory rate (RRoxi) interprets modulations of the photoplethsymograph in response to hemodynamic changes during the respiratory cycle. The aim of this study was to compare the performance of these technologies to each other and to a capnography-based reference device. Subjects were asked to decrease their RR from 14 to 4 breaths per minute (BPM) and then increase RR from 14 to 24 BPM. The effects of physiological noise, ambient noise, and head movement and shallow breathing on device performance were also evaluated. The test devices were: (1) RRa, Radical-7 (Masimo Corporation), (2) RRoxi, Nellcor™ Bedside Respiratory Patient Monitoring System (Medtronic), and (3) reference device, Capnostream20p™ (Medtronic). All devices were configured with their default settings. Twenty-nine healthy adult subjects were included in the study. During abrupt changes in breathing, overall RRoxi was accurate for longer periods of time than RRa; specifically, RRoxi was more accurate during low and normal RR, but not during high RR. RRoxi also displayed a value for significantly longer time periods than RRa when the subjects produced physiological sounds and moved their heads, but not during shallow breathing or ambient noise. RRoxi may be more accurate than RRa during development of bradypnea. Also, RRoxi may display a more reliable RR value during routine patient activities.


Subject(s)
Acoustics , Monitoring, Ambulatory/instrumentation , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Oximetry/methods , Respiration , Respiratory Rate/physiology , Adolescent , Adult , Capnography/methods , Female , Humans , Male , Monitoring, Ambulatory/methods , Prospective Studies , Reproducibility of Results , Young Adult
2.
J Dent Anesth Pain Med ; 18(2): 97-103, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29744384

ABSTRACT

BACKGROUND: Respiration monitoring is necessary during sedation for dental treatment. Recently, acoustic respiration rate (RRa™), an acoustics-based respiration monitoring method, has been used in addition to auscultation or capnography. The accuracy of this method may be compromised in an environment with excessive noise. This study evaluated whether noise from the ultrasonic scaler affects the performance of RRa in respiratory rate measurement. METHODS: We analyzed data from 49 volunteers who underwent scaling under intravenous sedation. Clinical tests were divided into preparation, sedation, and scaling periods; respiratory rate was measured at 2-s intervals for 3 min in each period. Missing values ratios of the RRa during each period were measuerd; correlation analysis and Bland-Altman analysis were performed on respiratory rates measured by RRa and capnogram. RESULTS: Respective missing values ratio from RRa were 5.62%, 8.03%, and 23.95% in the preparation, sedation, and scaling periods, indicating an increased missing values ratio in the scaling period (P < 0.001). Correlation coefficients of the respiratory rate, measured with two different methods, were 0.692, 0.677, and 0.562 in each respective period. Mean capnography-RRa biases in Bland-Altman analyses were -0.03, -0.27, and -0.61 in each respective period (P < 0.001); limits of agreement were -4.84-4.45, -4.89-4.15, and -6.18-4.95 (P < 0.001). CONCLUSIONS: The probability of missing respiratory rate values was higher during scaling when RRa was used for measurement. Therefore, the use of RRa alone for respiration monitoring during ultrasonic scaling may not be safe.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-739956

ABSTRACT

BACKGROUND: Respiration monitoring is necessary during sedation for dental treatment. Recently, acoustic respiration rate (RRa™), an acoustics-based respiration monitoring method, has been used in addition to auscultation or capnography. The accuracy of this method may be compromised in an environment with excessive noise. This study evaluated whether noise from the ultrasonic scaler affects the performance of RRa in respiratory rate measurement. METHODS: We analyzed data from 49 volunteers who underwent scaling under intravenous sedation. Clinical tests were divided into preparation, sedation, and scaling periods; respiratory rate was measured at 2-s intervals for 3 min in each period. Missing values ratios of the RRa during each period were measuerd; correlation analysis and Bland-Altman analysis were performed on respiratory rates measured by RRa and capnogram. RESULTS: Respective missing values ratio from RRa were 5.62%, 8.03%, and 23.95% in the preparation, sedation, and scaling periods, indicating an increased missing values ratio in the scaling period (P < 0.001). Correlation coefficients of the respiratory rate, measured with two different methods, were 0.692, 0.677, and 0.562 in each respective period. Mean capnography-RRa biases in Bland-Altman analyses were −0.03, −0.27, and −0.61 in each respective period (P < 0.001); limits of agreement were −4.84–4.45, −4.89–4.15, and −6.18–4.95 (P < 0.001). CONCLUSIONS: The probability of missing respiratory rate values was higher during scaling when RRa was used for measurement. Therefore, the use of RRa alone for respiration monitoring during ultrasonic scaling may not be safe.


Subject(s)
Acoustics , Auscultation , Bias , Capnography , Dental Scaling , Methods , Noise , Respiration , Respiratory Rate , Ultrasonics , Volunteers
SELECTION OF CITATIONS
SEARCH DETAIL
...