Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
J Biomech ; 172: 112222, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968650

ABSTRACT

Acoustic stimulation appears to be a promising strategy in reducing the risk of falling in older adults, demonstrating effectiveness in improving stability. However, its impact on movement variability, another crucial indicator of fall risk, seems to be limited. This study aims to assess movement variability during walking in a cohort of healthy older adults exposed to three different frequencies of acoustic stimulation (90%, 100% and 110% of each subject's average cadence). Using a systemic approach based on network theory, which considers the intricate relationships between all body segments, we constructed connectivity matrices composed of nodes, represented by bony landmarks, and edges, consisting of the standardised covariance of accelerations between each pair of nodes. By introducing a new metric called Similarity Score (S-score), we quantified the ability of each individual to repeat the same motor pattern at each gait cycle under different experimental conditions. The study revealed that rhythmic auditory stimulation (RAS) at 100% and 90% of the mean cadence significantly increased the S-scores compared to the baseline. These results highlight the effects of RAS in increasing gait repeatability in healthy older adults, with a focus on global kinematics.

2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731870

ABSTRACT

Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aß) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aß. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aß plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Plaque, Amyloid , Animals , Microglia/metabolism , Mice , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Transcranial Magnetic Stimulation/methods , Acoustic Stimulation , Mice, Transgenic , Disease Models, Animal , Synapses/metabolism , Hippocampus/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neuronal Plasticity , Long-Term Potentiation , Signal Transduction
3.
J Audiol Otol ; 28(2): 100-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38695055

ABSTRACT

We herein review the use of electrocochleography (ECoG) to assess peripheral auditory system responsiveness in a growing population of cochlear implant (CI) users with preserved hearing in ears with implants. Twenty-eight recently published intracochlear ECoG articles were thoroughly reviewed to investigate the prognostic utility of intraoperative ECoG monitoring to assess hearing preservation, and the clinical applicability of postoperative ECoG for estimating audiometric thresholds and monitoring longitudinal changes in residual acoustic hearing in patients with EAS. Intraoperative ECoG studies have focused on monitoring the changes in the cochlear microphonics (CM) amplitudes during and after electrode insertion. Mixed results have been reported regarding the relationship between changes in CM amplitude in the operating room and changes in hearing thresholds after surgery. Postoperative ECoG studies have shown that CM and auditory nerve neurophonics thresholds correlate significantly with behavioral thresholds. ECoG thresholds sensitively detect changes as residual acoustic hearing decreases over time in some CI users. This indicates its potential clinical value for monitoring the post-implantation status of the peripheral auditory system. Intracochlear ECoG can provide real-time intraoperative feedback and monitor postoperative hearing preservation in a growing population of CI users.

4.
Sci Rep ; 14(1): 8214, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589426

ABSTRACT

The feasibility of low frequency pure tone generation in the inner ear by laser-induced nonlinear optoacoustic effect at the round window was demonstrated in three human cadaveric temporal bones (TB) using an integral pulse density modulation (IPDM). Nanosecond laser pulses with a wavelength in the near-infrared (NIR) region were delivered to the round window niche by an optical fiber with two spherical lenses glued to the end and a viscous gel at the site of the laser focus. Using IPDM, acoustic tones with frequencies between 20 Hz and 1 kHz were generated in the inner ear. The sound pressures in scala tympani and vestibuli were recorded and the intracochlear pressure difference (ICPD) was used to calculate the equivalent sound pressure level (eq. dB SPL) as an equivalent for perceived loudness. The results demonstrate that the optoacoustic effect produced sound pressure levels ranging from 140 eq. dB SPL at low frequencies ≤ 200 Hz to 90 eq. dB SPL at 1 kHz. Therefore, the produced sound pressure level is potentially sufficient for patients requiring acoustic low frequency stimulation. Hence, the presented method offers a potentially viable solution in the future to provide the acoustic stimulus component in combined electro-acoustic stimulation with a cochlear implant.


Subject(s)
Round Window, Ear , Sound , Humans , Acoustic Stimulation , Round Window, Ear/physiology , Scala Tympani/physiology , Lasers , Cochlea/physiology
5.
BJA Open ; 10: 100276, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571816

ABSTRACT

Background: The alpha-2 adrenergic agonist dexmedetomidine induces EEG patterns resembling those of non-rapid eye movement (NREM) sleep. Fulfilment of slow wave sleep (SWS) homeostatic needs would address the assumption that dexmedetomidine induces functional biomimetic sleep states. Methods: In-home sleep EEG recordings were obtained from 13 healthy participants before and after dexmedetomidine sedation. Dexmedetomidine target-controlled infusions and closed-loop acoustic stimulation were implemented to induce and enhance EEG slow waves, respectively. EEG recordings during sedation and sleep were staged using modified American Academy of Sleep Medicine criteria. Slow wave activity (EEG power from 0.5 to 4 Hz) was computed for NREM stage 2 (N2) and NREM stage 3 (N3/SWS) epochs, with the aggregate partitioned into quintiles by time. The first slow wave activity quintile served as a surrogate for slow wave pressure, and the difference between the first and fifth quintiles as a measure of slow wave pressure dissipation. Results: Compared with pre-sedation sleep, post-sedation sleep showed reduced N3 duration (mean difference of -17.1 min, 95% confidence interval -30.0 to -8.2, P=0.015). Dissipation of slow wave pressure was reduced (P=0.02). Changes in combined durations of N2 and N3 between pre- and post-sedation sleep correlated with total dexmedetomidine dose, (r=-0.61, P=0.03). Conclusions: Daytime dexmedetomidine sedation and closed-loop acoustic stimulation targeting EEG slow waves reduced N3/SWS duration and measures of slow wave pressure dissipation on the post-sedation night in healthy young adults. Thus, the paired intervention induces sleep-like states that fulfil certain homeostatic NREM sleep needs in healthy young adults. Clinical trial registration: ClinicalTrials.gov NCT04206059.

6.
Article in English | MEDLINE | ID: mdl-38545636

ABSTRACT

OBJECTIVE: The objective was to determine the effects of older age on hearing preservation after cochlear implantation (CI), and whether steroids improve hearing preservation in older animals. We hypothesized greater hearing preservation would be observed in (1) young animals compared to older animals and (2) older animals receiving steroids compared to no steroids. The secondary objective was to assess levels of fibrosis utilizing optical coherence tomography (OCT). STUDY DESIGN: Experimental Animal Study. SETTING: Laboratory. METHODS: Three groups of guinea pigs: young (YCI; 8.5 ± 0.5 weeks; n = 10), old (OCI; 19.1 ± 1.0 months; n = 9) and old + steroids (OCI+S; 19.1 ± 1.0 months; n = 9) underwent CI. The OCI+S group received a steroid taper over 7 days starting 2 days before surgery to 4 days after. Auditory brainstem response (ABR) measurements were performed preoperatively and postoperatively. OCT imaging was performed to assess cochleae for extent of fibrotic tissue growth in the scala tympani. RESULTS: The YCI group had significantly better hearing preservation as measured by smaller increases in ABR thresholds [mean shift: 2.79 ± 0.66] compared to the OCI group [mean shift = 12.44 ± 5.6]. The OCI+S group had significantly better hearing preservation [2.66 ± 1.50] compared to the OCI group. No significant differences was seen in fibrosis across groups. CONCLUSIONS: Young animals and older animals that received steroids had better hearing after CI than older animals not given steroids, but hearing preservation was not correlated with the level of fibrosis assessed using OCT. This work is the first to investigate differences in hearing preservation by age in an animal model, and supports the protective effects of steroids on hearing preservation in older individuals.

7.
Front Neurosci ; 18: 1313639, 2024.
Article in English | MEDLINE | ID: mdl-38384480

ABSTRACT

Introduction: In our study, we applied transcranial magneto-acoustic stimulation (TMAS), a technique based on focused ultrasound stimulation within a static magnetic field, in the APP/PS1 mouse model of Alzheimer's disease (AD) to explore the feasibility of TMAS on improving AD related spatial memory deficits and abnormal neural oscillations. Methods: The mice treated with TMAS once daily for 21 days. We recorded local field potential signals in the hippocampal CA1 region of the mice after TMAS treatment with in-vivo electrophysiology and evaluated the neural rehabilitative effect of TMAS with sharp-wave ripple (SWR), gamma oscillations during SWRs, and phase-amplitude coupling (PAC). The spatial memory function of the mice was examined by the Morris water maze (MWM) task. Results: We found that TMAS improved the performance of MWM related spatial cognitive functions compared with AD group. Furthermore, our results implied that TMAS alleviated abnormalities in hippocampal SWRs, increased slow gamma power during SWRs, and promoted theta-slow gamma phase-amplitude coupling. These findings suggest that TMAS could have a positive influence on spatial memory through the modulation of neural oscillations. Discussion: This work emphasizes the potential of TMAS to serve as a non-invasive method for Alzheimer's disease rehabilitation and promote the application of TMAS for the treatment of more neurological and brain aging diseases in the future.

8.
CNS Neurosci Ther ; 30(3): e14385, 2024 03.
Article in English | MEDLINE | ID: mdl-37525451

ABSTRACT

AIM: Disruption of functional brain connectivity is thought to underlie disorders of consciousness (DOC) and recovery of impaired connectivity is suggested as an indicator of consciousness restoration. We recently found that rhythmic acoustic-electric trigeminal-nerve stimulation (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) in the gamma band can improve consciousness in patients with DOC. Here, we investigated whether these beneficial stimulation effects are mediated by alterations in functional connectivity. METHODS: Sixty-three patients with DOC underwent 5 days of gamma, beta, or sham acoustic-electric trigeminal-nerve stimulation. Resting-state electroencephalography was measured before and after the stimulation and functional connectivity was assessed using phase-lag index (PLI). RESULTS: We found that gamma stimulation induces an increase in gamma-band PLI. Further characterization revealed that the enhancing effect is (i) specific to the gamma band (as we observed no comparable change in beta-band PLI and no effect of beta-band acoustic-electric stimulation or sham stimulation), (ii) widely spread across the cortex, and (iii) accompanied by improvements in patients' auditory abilities. CONCLUSION: These findings show that gamma acoustic-electric trigeminal-nerve stimulation can improve resting-state functional connectivity in the gamma band, which in turn may be linked to auditory abilities and/or consciousness restoration in DOC patients.


Subject(s)
Brain , Consciousness Disorders , Humans , Consciousness Disorders/therapy , Consciousness/physiology , Electroencephalography , Electric Stimulation
9.
Rev. CEFAC ; 26(1): e3823, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1535107

ABSTRACT

ABSTRACT Purpose: to report scientific evidence on the impact of aphasia on central auditory processing and map the contribution of auditory training to aphasic individuals. Methods: a scoping review approaching national and international databases (SciELO, LILACS, PubMed, Scopus, and Cochrane Library) and the gray literature (Google Scholar and Open Grey). The inclusion criteria covered articles that addressed the interface between central auditory processing and aphasia, excluding duplicates, literature reviews, and scientific abstracts. Literature Review: the review comprised 13 articles that met the eligibility criteria for this study. Seven of the selected articles assessed central auditory processing, four used electrophysiological examinations (such as auditory brainstem response and long-latency auditory evoked potentials) to assess the auditory pathway, and only one analyzed the intervention in aphasic individuals with auditory training. Conclusion: scientific evidence points to an important change in aphasic people's central auditory processing, with impaired figure-ground, auditory closure, temporal resolution and ordering, and binaural integration. Moreover, it is relevant to assess auditory processing, given the contribution of auditory training in speech-language-hearing therapy for a better prognosis in the rehabilitation of aphasia.


RESUMO Objetivo: reportar as evidências científicas do impacto da afasia no Processamento Auditivo Central e mapear a contribuição do Treinamento Auditivo para a população afásica. Métodos: trata-se de uma revisão de escopo realizada nas bases de dados nacionais e internacionais: Scielo, Lilacs, Pubmed, Scopus, Cochrane Library e com uma busca adicional à literatura cinzenta no Google Scholar e Open Grey. Os critérios de inclusão abrangeram artigos que abordassem a interface do processamento auditivo central e afasia, excluindo-se as duplicações, artigos de revisão da literatura e resumos científicos. Revisão de Literatura: selecionaram-se 13 artigos que cumpriram os critérios de elegibilidade deste estudo. Dos artigos selecionados, sete apresentaram a avaliação do Processamento Auditivo Central, quatro apresentaram os exames eletrofisiológicos - como os exames de Potencial Evocado Auditivo de Tronco Encefálico (PEATE) e Potencial Evocado Auditivo de Longa Latência (PEALL) - para avaliação da via auditiva e apenas um estudo analisou a intervenção dos indivíduos afásicos por meio do treinamento auditivo. Conclusão: as evidências científicas apontam importante alteração no Processamento Auditivo Central dos afásicos, apresentando prejuízos nas habilidades auditivas de figura-fundo, fechamento auditivo, resolução e ordenação temporal e integração binaural. Ainda, demonstra-se como relevante a avaliação do processamento, devido à contribuição do Treinamento Auditivo nas terapias fonoaudiológicas para um melhor prognóstico na reabilitação das afasias.

10.
CoDAS ; 36(4): e20230111, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557628

ABSTRACT

ABSTRACT Purpose To analyze the effects of auditory stimulation on heart rate variability (HRV) indices in healthy individuals with normal hearing and with hearing loss, regardless of type and/or grade, by means of a systematic review. Research strategies This is a systematic review with a meta-analysis that addresses the following question: in healthy individuals with normal hearing and/or with hearing loss, what are the effects of auditory stimulation on HRV indices in comparison to silence? We consulted the Cochrane Library, Embase, LILACS, PubMed, Web of Science, and Scopus databases and the gray literature (Google Scholar, OpenGrey, and ProQuest). Selection criteria There were no restrictions as to period or language of publication. Data analysis We identified 451 records, an additional 261 in the gray literature, and five studies in a search through the references, resulting in a total of 717 records, with 171 duplicate records. After screening the titles and abstracts of 546 studies, we excluded 490 and considered 56 studies in full to assess their eligibility. Results Nine of these studies were included in the systematic review, eight of which were suitable for the meta-analysis. Conclusion It is suggested that auditory stimulation may influence the RMSSD, pNN50, SDNN, RRTri and SD2 indices of HRV in healthy adults with normal hearing.

11.
Brain Res Bull ; 205: 110812, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951276

ABSTRACT

Acoustic stimulation is one of the most influential techniques for distressing tinnitus, while how it functions to reverse neural changes associated with tinnitus remains undisclosed. In this study, our objective is to investigate alterations in brain networks to shed light on the enigma of acoustic intervention for tinnitus. We designed a 75-day long-term acoustic intervention experiment, during which chronic tinnitus patients received daily modulated acoustic stimulation with each session lasting 15 days. Every 15 days, professional tinnitus assessments were conducted, collecting both electroencephalogram (EEG) and tinnitus handicap inventory (THI) data from the patients. Thereafter, we investigated the changes in EEG network organizations during continuous acoustic stimulation and their progressive evolution throughout long-term therapy, alongside exploring the associations between the evolving changes of the network alterations and THI. Our current study findings reveal reorganization in alpha/beta long-range frontal-parietal-occipital connections as well as local frontal and parietal-occipital regions induced by acoustic stimulation. Furthermore, we observed a decrease in modulation effects as therapy sessions progressed. These alterations in brain networks reflect the reversal of tinnitus-related neural activities, particularly distress and perception; thus contributing to tinnitus rehabilitation through long-term modulation effects. This study provides unique insights into how long-term acoustic intervention affects the network organizations of tinnitus patients and deepens our understanding of the pathophysiological mechanisms underlying tinnitus rehabilitation.


Subject(s)
Tinnitus , Humans , Acoustic Stimulation/methods , Tinnitus/therapy , Electroencephalography , Parietal Lobe
12.
Cell Mol Neurobiol ; 43(8): 4189-4207, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37736859

ABSTRACT

To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.


Subject(s)
Tinnitus , Humans , Tinnitus/metabolism , Spiral Ganglion , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Synaptic Transmission , Neurons/metabolism
13.
Exp Gerontol ; 182: 112299, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37776987

ABSTRACT

Nonpharmacological therapies for Alzheimer's disease (AD) have become a popular research topic, and acoustic stimulation during sleep is one such promising strategy for the clinical treatment of AD. Some animal experiments have illustrated that acoustic stimulation at a specific frequency can ameliorate AD-related pathology or improve cognition in mice, but these studies did not explore the effective time window of auditory stimulation. Here, we explored the effects of acoustic stimulation during wakefulness and acoustic stimulation during sleep on cognition and AD-related pathology in APP/PS1 mice and the underlying mechanisms. In this study, forty APP/PS1 mice were equally divided into the following 4 groups and treated for 28 days: the chronic sleep deprivation (CSD) group (exposed to sleep deprivation from zeitgeber time [ZT] 0 to ZT 12 each day), the normal sleep and stress exposure (NSS) group (exposed to a stressor from ZT 0 to ZT 12 each day), the acoustic stimulation during wakefulness (ASW) group (exposed to sleep deprivation and 40 Hz acoustic stimulation from ZT 0 to ZT 12 each day) and the acoustic stimulation during sleep (ASS) group (exposed to sleep deprivation from ZT 0 to ZT 12 and 40 Hz acoustic stimulation from ZT 12 to ZT 24 each day). After the intervention, cognition was assessed by behavioural experiments. The amyloid-ß burden was analysed by Western blotting, immunofluorescence and enzyme-linked immunosorbent assay. Tau pathology was assessed by Western blotting. Mitochondrial function was evaluated by transmission electron microscopy, Western blotting and fluorescence intensity measurement. We found that the NSS and ASS groups had better cognitive functions than the CSD and ASW groups. The Aß burden and tau phosphorylation were lower in the NSS and ASS groups than in the CSD and ASW groups. Mitochondrial function was better in the NSS and ASS groups than in the CSD and ASW groups. However, the differences in these parameters between the NSS and ASS groups and between the CSD and ASW groups were not significant. Our findings suggest that acoustic stimulation at a specific frequency during sleep, but not during wakefulness, reduces the amyloid-ß burden by inhibiting amyloid beta precursor protein-binding protein 2, hinders tau phosphorylation by blocking glycogen synthase kinase 3 beta, and restores mitochondrial function by elevating mitophagy and promoting mitochondrial biogenesis.

14.
Animals (Basel) ; 13(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37760370

ABSTRACT

(1) Background: Since antiquity, it is considered that sounds influence human emotional states and health. Acoustic enrichment has also been proposed for domestic animals. However, in both humans and animals, effects vary according to the type of sound. Human studies suggest that frequencies, more than melodies, play a key role. Low and high frequencies, music tuning frequency and even EEG slow waves used for 'neurofeedback' produce effects. (2) Methods: We tested the possible impact of such pure frequencies on racehorses' behavior and physiology. A commercial non-audible acoustic stimulus, composed of an array of the above-mentioned frequencies, was broadcasted twice daily and for three weeks to 12 thoroughbred horses in their home stall. (3) Results: The results show a decrease in stereotypic behaviors and other indicators such as yawning or vacuum chewing, an increase in the time spent in recumbent resting and foraging, and better hematological measures during and after the playback phase for 4 of the 10 physiological parameters measured. (4) Conclusions: These results open new lines of research on possible ways of alleviating the stress related to housing and training conditions in racehorses and of improving physical recovery.

15.
Front Neurol ; 14: 1181539, 2023.
Article in English | MEDLINE | ID: mdl-37621854

ABSTRACT

Introduction: Intracochlear electrocochleography (ECochG) is increasingly being used to measure residual inner ear function in cochlear implant (CI) recipients. ECochG signals reflect the state of the inner ear and can be measured during implantation and post-operatively. The aim of our study was to apply an objective deep learning (DL)-based algorithm to assess the reproducibility of longitudinally recorded ECochG signals, compare them with audiometric hearing thresholds, and identify signal patterns and tonotopic behavior. Methods: We used a previously published objective DL-based algorithm to evaluate post-operative intracochlear ECochG signals collected from 21 ears. The same measurement protocol was repeated three times over 3 months. Additionally, we measured the pure-tone thresholds and subjective loudness estimates for correlation with the objectively detected ECochG signals. Recordings were made on at least four electrodes at three intensity levels. We extracted the electrode positions from computed tomography (CT) scans and used this information to evaluate the tonotopic characteristics of the ECochG responses. Results: The objectively detected ECochG signals exhibited substantial repeatability over a 3-month period (bias-adjusted kappa, 0.68; accuracy 83.8%). Additionally, we observed a moderate-to-strong dependence of the ECochG thresholds on audiometric and subjective hearing levels. Using radiographically determined tonotopic measurement positions, we observed a tendency for tonotopic allocation with a large variance. Furthermore, maximum ECochG amplitudes exhibited a substantial basal shift. Regarding maximal amplitude patterns, most subjects exhibited a flat pattern with amplitudes evenly distributed over the electrode carrier. At higher stimulation frequencies, we observed a shift in the maximum amplitudes toward the basal turn of the cochlea. Conclusions: We successfully implemented an objective DL-based algorithm for evaluating post-operative intracochlear ECochG recordings. We can only evaluate and compare ECochG recordings systematically and independently from experts with an objective analysis. Our results help to identify signal patterns and create a better understanding of the inner ear function with the electrode in place. In the next step, the algorithm can be applied to intra-operative measurements.

16.
Int J Pediatr Otorhinolaryngol ; 172: 111692, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542812

ABSTRACT

OBJECTIVE: To verify the effectiveness of acoustically controlled auditory training in individuals with Neurofibromatosis Type 1. METHODS: The sample consisted of individuals with Neurofibromatosis Type 1, randomly distributed into two groups, making up the intervention group: individuals undergoing formal auditory training; and the comparison group: individuals who were not submitted to the intervention. Behavioral assessment of central auditory processing and electrophysiological evaluation, composed by Brainstem Auditory Evoked Potential and Long Latency-P300 Auditory Evoked Potential, were evaluated in three moments of evaluations: initial evaluation, reevaluation and after four months of reevaluation and comparing the performance between the groups. RESULTS: Better performances in central auditory processing were observed after the formal auditory training in the intervention group with significant differences between the evaluations and performance maintenance four months after the end of the training. Significant differences were observed between the groups in the evaluations after the intervention. The electrophysiological evaluation shows unsystematic variation in the short latency potentials and changes in the long latency potentials with the appearance of the P3 wave after the intervention. The behavioral and electrophysiological evaluation in group that was not submitted to the intervention demonstrated that there is no improvement without the intervention, with deterioration of performance. Significant differences were observed in the behavioral and electrophysiological evaluations, in favor of the group submitted to formal auditory training. CONCLUSIONS: Formal auditory training is effective in rehabilitation in individuals with Neurofibromatosis Type 1. DESCRIPTORS/KEYWORDS: Neurofibromatosis 1; Hearing Disorders; Auditory Perceptual Disorders; Acoustic Stimulation; Evoked Potentials, Auditory.


Subject(s)
Neurofibromatosis 1 , Humans , Neurofibromatosis 1/complications , Neurofibromatosis 1/therapy , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Auditory Perception/physiology , Evoked Potentials, Auditory, Brain Stem
17.
J Clin Sleep Med ; 19(12): 2107-2112, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37593850

ABSTRACT

STUDY OBJECTIVES: Sleep disturbances are common in people with Alzheimer's disease (AD), and a reduction in slow-wave activity is the most striking underlying change. Acoustic stimulation has emerged as a promising approach to enhance slow-wave activity in healthy adults and people with amnestic mild cognitive impairment. In this phase 1 study we investigated, for the first time, the feasibility of acoustic stimulation in AD and piloted the effect on slow-wave sleep (SWS). METHODS: Eleven adults with mild to moderate AD first wore the DREEM 2 headband for 2 nights to establish a baseline registration. Using machine learning, the DREEM 2 headband automatically scores sleep stages in real time. Subsequently, the participants wore the headband for 14 consecutive "stimulation nights" at home. During these nights, the device applied phase-locked acoustic stimulation of 40-dB pink noise delivered over 2 bone-conductance transducers targeted to the up-phase of the delta wave or SHAM, if it detected SWS in sufficiently high-quality data. RESULTS: Results of the DREEM 2 headband algorithm show a significant average increase in SWS (minutes) [t(3.17) = 33.57, P = .019] between the beginning and end of the intervention, almost twice as much time was spent in SWS. Consensus scoring of electroencephalography data confirmed this trend of more time spent in SWS [t(2.4) = 26.07, P = .053]. CONCLUSIONS: Our phase 1 study provided the first evidence that targeted acoustic stimuli is feasible and could increase SWS in AD significantly. Future studies should further test and optimize the effect of stimulation on SWS in AD in a large randomized controlled trial. CITATION: Van den Bulcke L, Peeters A-M, Heremans E, et al. Acoustic stimulation as a promising technique to enhance slow-wave sleep in Alzheimer's disease: results of a pilot study. J Clin Sleep Med. 2023;19(12):2107-2112.


Subject(s)
Alzheimer Disease , Sleep, Slow-Wave , Adult , Humans , Acoustic Stimulation/methods , Pilot Projects , Alzheimer Disease/complications , Alzheimer Disease/therapy , Electroencephalography/methods , Sleep/physiology
18.
Clinics (Sao Paulo) ; 78: 100245, 2023.
Article in English | MEDLINE | ID: mdl-37478629

ABSTRACT

OBJECTIVE: Investigate the auditory function of the elderly using the middle latency potentials. METHODOLOGY: Group 1 (G1): 20 healthy individuals of both genders, older than 60 years, without hearing loss. Group 2 (G2): 20 healthy individuals of both sexes, older than 60 years, with hearing loss in frequencies from 4 to 8 kHz. Potential recording was performed with unilateral and bilateral stimulation and the Binaural Interaction Component was calculated. RESULTS: Na latency in C3A1 was greater in the stimulation of the right ear in G2 and the amplitude of Na-Pa was greater in the stimulation of the right ear and recording in C3A1 in G1. The latency of the Pa component was higher in the stimulation of the right ear recorded in C4A2. The Pb component in G2 by bilateral stimulation and recorded in C4A2 had higher latency. The first and second negative and positive peaks presented greater amplitude in G1. In C3A1, the 1st negative peak was more negative in G1 and the 2nd positive peak showed greater amplitude in C4A2 in both groups. CONCLUSION: The transmission of auditory information to the primary auditory cortex is impaired with aging, especially in unilateral stimulation, reinforced by losses in elderly people with peripheral hearing loss, such as in the binaural interaction at the cortical and subcortical levels. Thus, the AMLR has shown to be a sensitive examination to investigate neuroauditory disorders in the elderly, especially related to high-frequency hearing loss and primary auditory cortex dysfunctions caused by the aging process.


Subject(s)
Auditory Cortex , Hearing Loss , Aged , Humans , Male , Female , Evoked Potentials, Auditory/physiology , Hearing , Aging/physiology , Ear , Acoustic Stimulation , Auditory Cortex/physiology
19.
BMJ Open ; 13(7): e072416, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438071

ABSTRACT

INTRODUCTION: Bradykinesia (ie, slow movements) is one of the most prominent symptoms of Parkinson's disease (PD) and has a negative impact on quality of life. Rhythmic auditory stimulation (RAS), a widely used and promising treatment technique, has been shown to effectively improve gait speed in patients with PD. The upper-limb movements, which also suffer from bradykinesia, are essential for daily life and directly impact quality of life. The term, patterned sensory enhancement (PSE) instead of RAS, is used when movement training targets the human body except lower limbs. Up until now, scarce studies have explored effects of training involving PSE on upper-limb movements. The purpose of this study is to investigate effects of movement training involving PSE on upper-limb movement speed and function in patients with PD. METHODS AND ANALYSIS: A total of 138 patients with PD will be randomly assigned into two groups: the PSE group and the no-PSE group. A 21-day upper-limb training involving PSE (for the PSE group) or without PSE (for the no-PSE group) will be provided to the patients. An assessor will administer the box and block test and the Jebsen hand function test before and after training to assess upper-limb movement speed and function. The one-way analysis of covariance will be performed. This randomised controlled trial will provide evidence supporting effectiveness of upper-limb movement training involving PSE on reducing severity of bradykinesia in patients with PD. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Institutional Review Board of the Hong Kong Polytechnic University with the reference number HSEARS20221027005. Informed consent forms will be gathered from all patients before their participation. Study results will be disseminated through conferences and peer-reviewed academic journals. TRIAL REGISTRATION NUMBER: NCT05637593.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/therapy , Hypokinesia , Quality of Life , Movement , Upper Extremity , Randomized Controlled Trials as Topic
20.
J Clin Med ; 12(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37445587

ABSTRACT

The maturation of the uncrossed medial olivocochlear (UMOC) efferent remains poorly documented to date. The UMOC efferent system allows listeners to not only detect but also to process, recognize, and discriminate auditory stimuli. Its fibers can be explored non-invasively by recording the effect of contralateral acoustic stimulation (CAS), resulting in a decrease in the amplitude of transient evoked otoacoustic emissions (TEOAE). The objective of the present cross-sectional study was to investigate how the effectiveness of this system varies with age in healthy subjects aged 8 years to adulthood. For this purpose, 120 right-handed native French-speaking subjects (57 females and 63 males) were divided into five age groups of 24 subjects each: 8y-10y, 10y-11y6m, 11y6m-13y, 13y-17y, and ≥18y. TEOAE amplitudes with and without CAS were recorded. The equivalent attenuation (EA) was calculated, corresponding to the change in TEOAE amplitude equivalent to the effect generated by CAS. General linear models were performed to control for the effect of ear, sex, and age on EA. No sex effect was found. A stronger EA was consistently found regardless of age group in the right ear compared to the left. In contrast to the right ear, for which, on average, EA remained constant across age groups, an increasingly weaker TEOAE suppression effect with age was found in the left ear, reinforcing the asymmetrical functioning of the UMOC efferent system in favor of the right ear in adulthood. Further studies are needed to investigate the lateralization of the UMOC efferent system and its changes over time in cases of atypical or reversed cortical asymmetries, especially in subjects with specific learning disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...