Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37804092

ABSTRACT

Coral species in the genus Acropora are key ecological components of coral reefs worldwide and represent the most diverse genus of scleractinian corals. While key species of Indo-Pacific Acropora have annotated genomes, no annotated genome has been published for either of the two species of Caribbean Acropora. Here we present the first fully annotated genome of the endangered Caribbean staghorn coral, Acropora cervicornis. We assembled and annotated this genome using high-fidelity nanopore long-read sequencing with gene annotations validated with mRNA sequencing. The assembled genome size is 318 Mb, with 28,059 validated genes. Comparative genomic analyses with other Acropora revealed unique features in A. cervicornis, including contractions in immune pathways and expansions in signaling pathways. Phylogenetic analysis confirms previous findings showing that A. cervicornis diverged from Indo-Pacific relatives around 41 million years ago, with the closure of the western Tethys Sea, prior to the primary radiation of Indo-Pacific Acropora. This new A. cervicornis genome enriches our understanding of the speciose Acropora and addresses evolutionary inquiries concerning speciation and hybridization in this diverse clade.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Phylogeny , Coral Reefs , Caribbean Region
2.
Mol Ecol ; 32(17): 4814-4828, 2023 09.
Article in English | MEDLINE | ID: mdl-37454286

ABSTRACT

The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Genotype , Caribbean Region , Adaptation, Physiological , Epigenesis, Genetic , Coral Reefs
3.
PeerJ ; 11: e15170, 2023.
Article in English | MEDLINE | ID: mdl-37361046

ABSTRACT

Background: Coral diseases are one of the leading causes of declines in coral populations. In the Caribbean, white band disease (WBD) has led to a substantial loss of Acropora corals. Although the etiologies of this disease have not been well described, characterizing the coral microbiome during the transition from a healthy to diseased state is critical for understanding disease progression. Coral nurseries provide unique opportunities to further understand the microbial changes associated with diseased and healthy corals, because corals are monitored over time. We characterized the microbiomes before and during an outbreak of WBD in Acropora cervicornis reared in an ocean nursery in Little Cayman, CI. We asked (1) do healthy corals show the same microbiome over time (before and during a disease outbreak) and (2) are there disease signatures on both lesioned and apparently healthy tissues on diseased coral colonies? Methods: Microbial mucus-tissue slurries were collected from healthy coral colonies in 2017 (before the disease) and 2019 (during the disease onset). Diseased colonies were sampled at two separate locations on an individual coral colony: at the interface of Disease and ∼10 cm away on Apparently Healthy coral tissue. We sequenced the V4 region of the 16S rRNA gene to characterize bacterial and archaeal community composition in nursery-reared A. cervicornis. We assessed alpha diversity, beta diversity, and compositional differences to determine differences in microbial assemblages across health states (2019) and healthy corals between years (2017 and 2019). Results: Microbial communities from healthy A. cervicornis from 2017 (before disease) and 2019 (after disease) did not differ significantly. Additionally, microbial communities from Apparently Healthy samples on an otherwise diseased coral colony were more similar to Healthy colonies than to the diseased portion on the same colony for both alpha diversity and community composition. Microbial communities from Diseased tissues had significantly higher alpha diversity than both Healthy and Apparently Healthy tissues but showed no significant difference in beta-diversity dispersion. Our results show that at the population scale, Healthy and Apparently Healthy coral tissues are distinct from microbial communities associated with Diseased tissues. Furthermore, our results suggest stability in Little Cayman nursery coral microbiomes over time. We show healthy Caymanian nursery corals had a stable microbiome over a two-year period, an important benchmark for evaluating coral health via their microbiome.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Caribbean Region
4.
PeerJ ; 10: e13574, 2022.
Article in English | MEDLINE | ID: mdl-35729906

ABSTRACT

Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.


Subject(s)
Anthozoa , Microbiota , Animals , Coral Reefs , Florida , RNA, Ribosomal, 16S/genetics , Endangered Species , Anthozoa/genetics , Bacteria/genetics , Rickettsiales/genetics , Microbiota/genetics
5.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34666521

ABSTRACT

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Subject(s)
Anthozoa , Thermotolerance , Animals , Anthozoa/physiology , Censuses , Coral Reefs , Florida
6.
Proc Biol Sci ; 288(1960): 20210923, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34641725

ABSTRACT

Knowledge of multi-stressor interactions and the potential for tradeoffs among tolerance traits is essential for developing intervention strategies for the conservation and restoration of reef ecosystems in a changing climate. Thermal extremes and acidification are two major co-occurring stresses predicted to limit the recovery of vital Caribbean reef-building corals. Here, we conducted an aquarium-based experiment to quantify the effects of increased water temperatures and pCO2 individually and in concert on 12 genotypes of the endangered branching coral Acropora cervicornis, currently being reared and outplanted for large-scale coral restoration. Quantification of 12 host, symbiont and holobiont traits throughout the two-month-long experiment showed several synergistic negative effects, where the combined stress treatment often caused a greater reduction in physiological function than the individual stressors alone. However, we found significant genetic variation for most traits and positive trait correlations among treatments indicating an apparent lack of tradeoffs, suggesting that adaptive evolution will not be constrained. Our results suggest that it may be possible to incorporate climate-resistant coral genotypes into restoration and selective breeding programmes, potentially accelerating adaptation.


Subject(s)
Anthozoa , Climate Change , Animals , Anthozoa/genetics , Coral Reefs , Ecosystem , Endangered Species
7.
Metabolomics ; 17(7): 60, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34143280

ABSTRACT

INTRODUCTION: Research aimed at understanding intraspecific variation among corals could substantially increase understanding of coral biology and improve outcomes of active restoration efforts. Metabolomics is useful for identifying physiological drivers leading to variation among genotypes and has the capacity to improve our selection of candidate corals that express phenotypes beneficial to restoration. OBJECTIVES: Our study aims to compare metabolomic profiles among known, unique genotypes of the threatened coral Acropora cervicornis. In doing so, we seek information related to the physiological characteristics driving variation among genotypes, which could aid in identifying genets with desirable traits for restoration. METHODS: We applied proton nuclear magnetic resonance (1H-NMR) and liquid chromatography-mass spectrometry (LC-MS) to identify and compare metabolomic profiles for seven unique genotypes of A. cervicornis that previously exhibited phenotypic variation in a common garden coral nursery. RESULTS: Significant variation in polar and nonpolar metabolite profiles was found among A. cervicornis genotypes. Despite difficulties identifying all significant metabolites driving separation among genotypes, our data support previous findings and further suggest metabolomic profiles differ among various genotypes of the threatened species A. cervicornis. CONCLUSION: The implementation of metabolomic analyses allowed identification of several key metabolites driving separation among genotypes and expanded our understanding of the A. cervicornis metabolome. Although our research is specific to A. cervicornis, these findings have broad relevance for coral biology and active restoration. Furthermore, this study provides specific information on the understudied A. cervicornis metabolome and further confirmation that differences in metabolome structure could drive phenotypic variation among genotypes.


Subject(s)
Anthozoa , Metabolomics , Animals , Anthozoa/genetics , Caribbean Region , Endangered Species , Genotype
8.
Adv Mar Biol ; 87(1): 61-82, 2020.
Article in English | MEDLINE | ID: mdl-33293020

ABSTRACT

Chronic coral reef degradation has been characterized by a significant decline in the population abundance and live tissue cover of scleractinian corals across the wider Caribbean. Acropora cervicornis is among the species whose populations have suffered an unprecedented collapse throughout the region. This species, which once dominated the shallow-water reef communities, is susceptible to a wide range of stressors, resulting in a general lack of recovery following disturbances. A. cervicornis is a critical contributor to the structure, function, and resilience of Caribbean coral reefs. Therefore, it is essential to identify the factors that influence their demographic and population performance. Diseases are one of the factors that are compromising the recovery of coral populations. In this chapter, we use size-based population matrix models to evaluate the population-level effect of a Shut Down Reaction Disease (SDR) outbreak, one of the less-understood diseases affecting this coral. The model was parameterized by following the fate of 105 colonies for 2 years at Tamarindo reef in Culebra, Puerto Rico. SDR, which affected 78% of the population, led to a rapid decline in colony abundance. The estimated population growth rate (λ) for the diseased population was more than six times lower than would be expected for a population at equilibrium. It was found that colonies in the smaller size class (≤100cm total linear length) were more likely to get infected and succumbing to the disease than larger colonies. Model simulations indicate that: (1) under the estimated λ, the population would reach extinction in 5 years; (2) an SDR outbreak as intense as the one observed in this study can lead to a notable decline in stochastic λs even when relatively rare (i.e. 10% probability of occurring); and (3) disease incidence as low as 5% can cause the population to lose its ecological functionality (e.g., reach a pseudo-extinction level of 10% of the initial population size) 33 years before disappearing. SDR and probably any other similarly virulent disease could thus be a major driver of local extinction events of A. cervicornis.


Subject(s)
Anthozoa , Coral Reefs , Animals , Conservation of Natural Resources , Endangered Species , Population Density , Population Dynamics , Puerto Rico
9.
PeerJ ; 8: e9635, 2020.
Article in English | MEDLINE | ID: mdl-32913671

ABSTRACT

BACKGROUND: The architecturally important coral species Acropora cervicornis and A. palmata were historically common in the Caribbean, but have declined precipitously since the early 1980s. Substantial resources are currently being dedicated to coral gardening and the subsequent outplanting of asexually reproduced colonies of Acropora, activities that provide abundant biomass for both restoration efforts and for experimental studies to better understand the ecology of these critically endangered coral species. METHODS: We characterized the bacterial and archaeal community composition of A. cervicornis corals in a Caribbean nursery to determine the heterogeneity of the microbiome within and among colonies. Samples were taken from three distinct locations (basal branch, intermediate branch, and branch tip) from colonies of three different coral genotypes. RESULTS: Overall, microbial community composition was similar among colonies due to high relative abundances of the Rickettsiales genus MD3-55 (Candidatus Aquarickettsia) in nearly all samples. While microbial communities were not different among locations within the same colony, they were significantly different between coral genotypes. These findings suggest that sampling from any one location on a coral host is likely to provide a representative sample of the microbial community for the entire colony. Our results also suggest that subtle differences in microbiome composition may be influenced by the coral host, where different coral genotypes host slightly different microbiomes. Finally, this study provides baseline data for future studies seeking to understand the microbiome of nursery-reared A. cervicornis and its roles in coral health, adaptability, and resilience.

10.
PeerJ ; 8: e8863, 2020.
Article in English | MEDLINE | ID: mdl-32337099

ABSTRACT

Acropora cervicornis is a structurally and functionally important Caribbean coral species. Since the 1980s, it has suffered drastic population losses with no signs of recovery and has been classified as a critically endangered species. Its rapid growth rate makes it an excellent candidate for coral restoration programs. In 2011, the Fundación Dominicana de Estudios Marinos (Dominican Marine Studies Foundation, FUNDEMAR) began an A. cervicornis restoration program in Bayahibe, southeast Dominican Republic. In this study, we present the methodology and results of this program from its conception through 2017, a preliminary analysis of the strong 2016 and 2017 cyclonic seasons in the greater Caribbean, and a genetic characterization of the "main nursery". The mean survival of the fragments over 12 months was 87.45 ± 4.85% and the mean productivity was 4.01 ± 1.88 cm year-1 for the eight nurseries. The mean survival of six outplanted sites over 12 months was 71.55 ± 10.4%, and the mean productivity was 3.03 ± 1.30 cm year-1. The most common cause of mortality during the first 12 months, in both nurseries and outplanted sites, was predation by the fireworm, Hermodice carunculata. We identified 32 multilocus genotypes from 145 total analyzed individuals. The results and techniques described here will aid in the development of current and future nursery and outplanted site restoration programs.

11.
Dis Aquat Organ ; 137(3): 217-237, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32132275

ABSTRACT

This study is a multi-pronged description of a temperature-induced outbreak of white-band disease (WBD) that occurred in Acropora cervicornis off northern Miami Beach, Florida (USA), from July to October 2014. We describe the ecology of the disease and examine diseased corals using both histopathology and next-generation bacterial 16S gene sequencing, making it possible to better understand the effect this disease has on the coral holobiont, and to address some of the seeming contradictions among previous studies of WBD that employed either a purely histological or molecular approach. The outbreak began in July 2014, as sea surface temperatures reached 29°C, and peaked in mid-September, a month after the sea surface temperature maximum. The microscopic anatomy of apparently healthy portions of colonies displaying active disease signs appeared normal except for some tissue atrophy and dissociation of mesenterial filaments deep within the branch. Structural changes were more pronounced in visibly diseased fragments, with atrophy, necrosis, and lysing of surface and basal body wall and polyp structures at the tissue-loss margin. The only bacteria evident microscopically in both diseased and apparently healthy tissues with Giemsa staining was a Rickettsiales-like organism (RLO) occupying mucocytes. Sequencing also identified bacteria belonging to the order Rickettsiales in all fragments. When compared to apparently healthy fragments, diseased fragments had more diverse bacterial communities made up of many previously suggested potential primary pathogens and secondary (opportunistic) colonizers. Interactions between elevated seawater temperatures, the coral host, and pathogenic members of the diseased microbiome all contribute to the coral displaying signs of WBD.


Subject(s)
Anthozoa , Animals , Bacteria , Coral Reefs , Disease Outbreaks , Ecosystem , Florida
12.
PeerJ ; 8: e8435, 2020.
Article in English | MEDLINE | ID: mdl-32095328

ABSTRACT

Natural population recovery of Acropora palmata, A. cervicornis and their hybrid, Acropora prolifera, have fluctuated significantly after their Caribbean-wide, disease-induced mass mortality in the early 1980s. Even though significant recovery has been observed in a few localities, recurrent disease outbreaks, bleaching, storm damage, local environmental deterioration, algae smothering, predation, low sexual recruitment and low survivorship have affected the expected, quick recovery of these weedy species. In this study, the status of three recovering populations of A. cervicornis and two of A. prolifera were assessed over one year using coral growth and mortality metrics, and changes in their associated algae and fish/invertebrate communities in three localities in the La Parguera Natural Reserve (LPNR), southwest coast of Puerto Rico. Five branches were tagged in each of 29, medium size (1-2 m in diameter) A. cervicornis and 18 A. prolifera colonies in the Media Luna, Mario and San Cristobal reefs off LPNR. Branches were measured monthly, together with observations to evaluate associated disease(s), algae accumulation and predation. A. cervicornis grew faster [3.1 ± 0.44 cm/month (= 37.2 cm/y)] compared to A. prolifera [2.6 ± 0.41 cm/month (= 31.2 cm/y)], and growth was significantly higher during Winter-Spring compared to Summer-Fall for both taxa (3.5 ± 0.58 vs. 0.53 ± 0.15 cm/month in A. cervicornis, and 2.43 ± 0.71 vs. 0.27 ± 0.20 cm/month in A. prolifera, respectively). Algal accumulation was only observed in A. cervicornis, and was higher during Spring-Summer compared to Fall-Winter (6.1 ± 0.91 cm/month and 3.8 ± 0.29 cm/month, respectively, (PERMANOVA, df = 2, MS = 10.2, p = 0.37)). Mortality associated with white band disease, algae smothering and fish/invertebrate predation was also higher in A. cervicornis and varied among colonies within sites, across sites and across season. The balance between tissue grow and mortality determines if colonies survive. This balance seems to be pushed to the high mortality side often by increasing frequency of high thermal anomalies, inducing bleaching and disease outbreaks and other factors, which have historically impacted the natural recovery of these taxa in the La Parguera Natural Reserve in Puerto Rico and possibly other areas in the region. Overall, results indicate variability in both growth and mortality rates in both taxa across localities and seasons, with A. cervicornis showing overall higher mortalities compared to A. prolifera.

13.
Glob Chang Biol ; 25(12): 4092-4104, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31566878

ABSTRACT

The capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along-coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire - between 5 and 12 m depth - at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3  m-2  year-1 ), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3  m-2  year-1 ) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land-based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low-accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea-level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along-coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large-scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.


Subject(s)
Anthozoa , Ecosystem , Animals , Carbonates , Caribbean Region , Coral Reefs , Humans
14.
PeerJ ; 7: e6849, 2019.
Article in English | MEDLINE | ID: mdl-31106065

ABSTRACT

The surface mucus layer of reef-building corals supports feeding, sediment clearing, and protection from pathogenic invaders. As much as half of the fixed carbon supplied by the corals' photosynthetic symbionts is incorporated into expelled mucus. It is therefore reasonable to expect that coral bleaching (disruption of the coral-algal symbiosis) would affect mucus production. Since coral mucus serves as an important nutrient source for the entire reef community, this could have substantial ecosystem-wide consequences. In this study, we examined the effects of heat stress-induced coral bleaching on the composition and antibacterial properties of coral mucus. In a controlled laboratory thermal challenge, stressed corals produced mucus with higher protein (ß = 2.1, p < 0.001) and lipid content (ß = 15.7, p = 0.02) and increased antibacterial activity (likelihood ratio = 100, p < 0.001) relative to clonal controls. These results are likely explained by the expelled symbionts in the mucus of bleached individuals. Our study suggests that coral bleaching could immediately impact the nutrient flux in the coral reef ecosystem via its effect on coral mucus.

15.
Ecol Evol ; 9(8): 4518-4531, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31031924

ABSTRACT

As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter- and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high- and low-density aggregations of the threatened coral Acropora cervicornisin the Caribbean. We find that high-density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet-ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density-dependent factor that may impact traits important for the structure and function of coral reefs.

16.
PeerJ ; 7: e6751, 2019.
Article in English | MEDLINE | ID: mdl-30993053

ABSTRACT

Disease mortality has been a primary driver of population declines and the threatened status of the foundational Caribbean corals, Acropora palmata and A. cervicornis. There remain few tools to effectively manage coral disease. Substantial investment is flowing into in situ culture and population enhancement efforts, while disease takes a variable but sometimes high toll in restored populations. If genetic resistance to disease can be identified in these corals, it may be leveraged to improve resistance in restored populations and possibly lead to effective diagnostic tests and disease treatments. Using a standardized field protocol based on replicated direct-graft challenge assays, we quantified this important trait in cultured stocks from three field nurseries in the Florida Keys. Field tests of 12 genotypes of A. palmata and 31 genotypes of A. cervicornis revealed significant genotypic variation in disease susceptibility of both species measured both as risk of transmission (percent of exposed fragments that displayed tissue loss) and as the rate of tissue loss (cm2 d-1) in fragments with elicited lesions. These assay results provide a measure of relative disease resistance that can be incorporated, along with consideration of other important traits such as growth and reproductive success, into restoration strategies to yield more resilient populations.

17.
PeerJ ; 7: e6470, 2019.
Article in English | MEDLINE | ID: mdl-30809452

ABSTRACT

The reef crests of the Jardines de la Reina National Park (JRNP) are largely formed by Acropora palmata, but colonies of A. cervicornis and the hybrid A. prolifera are also present. This study shows spatial distribution of colonies, thickets and live fragments of these species in the fore reefs. Snorkeling was used to perform the direct observations. The maximum diameter of 4,399 colonies of A. palmata was measured and the health of 3,546 colonies was evaluated. The same was done to 168 colonies of A. cervicornis and 104 colonies of A. prolifera. The influence of the location and marine currents on a number of living colonies of A. palmata was analyzed. For such purpose, reef crests were divided into segments of 500 m. The marine park was divided into two sectors: East and West. The Caballones Channel was used as the reference dividing line. The park was also divided into five reserve zones. We counted 7,276 live colonies of Acropora spp. 1.4% was A. prolifera, 3.5% A. cervicornis and 95.1% A. palmata. There were 104 thickets of A. palmata, ranging from eight to 12 colonies, and 3,495 fragments; 0.6% was A. cervicornis and the rest A. palmata (99.4%). In the East sector, 263 colonies (3.8% of the total), six thickets (5.8%) and 32 fragments (1%) of A. palmate were recorded. In the same sector, there were 11 fragments (50%) of A.cervicornis and two (2%) colonies of A. prolifera. Health of A. palmata was evaluated as good and not so good in the study area. Health of A. cervicornis was critical and health of A. prolifera was good in all five reserve zones. There was a significant increase in the number of colonies from east to west (Χ2 = 11.5, gl = 3.0, p = 0.009). This corroborates the existence of an important abundance differences between the eastern and the western region of the JRNP. A negative relationship was observed between the number of colonies and the distance from the channel (Χ2 = 65.0, df = 3.0, p < 0.001). The influence of the channel, for the live colonies of A. palmata is greater within the first 2,000 m. It then decreases until approximately 6,000 m, and no significant increase beyond. The orientation of the reef crests significantly influenced the abundance of the colonies (Χ2 = 15.5, df = 2.9, p = 0.001). The results presented here provide a baseline for future research on the status of the populations of Acropora spp., considering that there has been a certain recovery of the species A. palmata during the last 10-16 years. Given the current status of the populations of Acropora spp., conservation actions focusing A. cervicornis should be prioritized.

18.
Elife ; 72018 09 11.
Article in English | MEDLINE | ID: mdl-30203745

ABSTRACT

Determining the adaptive potential of foundation species, such as reef-building corals, is urgent as the oceans warm and coral populations decline. Theory predicts that corals may adapt to climate change via selection on standing genetic variation. Yet, corals face not only rising temperatures but also novel diseases. We studied the interaction between two major stressors affecting colonies of the threatened coral, Acropora cervicornis: white-band disease and high water temperature. We determined that 27% of A. cervicornis were disease resistant prior to a thermal anomaly. However, disease resistance was largely lost during a bleaching event because of more compromised coral hosts or increased pathogenic dose/virulence. There was no tradeoff between disease resistance and temperature tolerance; disease susceptibility was independent of Symbiodinium strain. The present study shows that susceptibility to temperature stress creates an increased risk in disease-associated mortality, and only rare genets may maintain or gain infectious disease resistance under high temperature. We conclude that A. cervicornis populations in the lower Florida Keys harbor few existing genotypes that are resistant to both warming and disease.


Subject(s)
Anthozoa/immunology , Anthozoa/physiology , Disease Resistance , Endangered Species , Animals , Anthozoa/genetics , Anthozoa/microbiology , Bacteria/classification , Bayes Theorem , Disease Susceptibility , Genotype , Photochemical Processes , Risk
19.
Ecol Evol ; 7(16): 6188-6200, 2017 08.
Article in English | MEDLINE | ID: mdl-28861224

ABSTRACT

Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis, across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis, including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

20.
PeerJ ; 5: e3502, 2017.
Article in English | MEDLINE | ID: mdl-28698820

ABSTRACT

Coral diseases are a leading factor contributing to the global decline of coral reefs, and yet mechanisms of disease transmission remain poorly understood. This study tested whether zooplankton can act as a vector for white band disease (WBD) in Acropora cervicornis. Natural zooplankton communities were collected from a coral reef in Bocas del Toro, Panama. Half of the zooplankton were treated with antibiotics for 24 h after which the antibiotic-treated and non-antibiotic-treated zooplankton were incubated with either seawater or tissue homogenates from corals exhibiting WBD-like symptoms. A total of 15 of the 30 asymptomatic A. cervicornis colonies exposed to zooplankton incubated in disease homogenate in tank-based experiments showed signs of WBD, regardless of prior antibiotic incubation. These results indicate that in our experimental conditions zooplankton were a vector for coral disease after exposure to disease-causing pathogens. Given the importance of heterotrophy on zooplankton to coral nutrition, this potential mode of disease transmission warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL